Penerapan Model CRISP-DM Untuk Klasifikasi Tumor Otak Menggunakan Algoritma CNN

Authors

  • Hamdun Sulaiman Universitas Bina Sarana Informatika
  • Yuri Yuliani Universitas Bina Sarana Informatika
  • Yanto Universitas Bina Sarana Informatika
  • Ibnu Al Farobi Universitas Bina Sarana Informatika
  • Kukuh Panggalih Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.29408/jit.v8i2.31014

Keywords:

CNN Algorithm, Classification, Brain Tumor, CRISP-DM

Abstract

In general, a tumor is an abnormal tissue growth in the body that occurs due to uncontrolled cell division. Tumors can be benign (non-cancerous) or malignant (cancerous). Benign tumors tend to grow locally without spreading to other tissues, while malignant tumors can invade surrounding tissues and spread to other parts of the body through the bloodstream. A brain tumor is a mass or growth of abnormal tissue in or around the brain. Specifically, brain tumors can be primary (originating from the brain cells themselves or surrounding tissues, such as the meninges, pituitary gland, or cranial nerves) or secondary (metastasis from cancer originating from other parts of the body). The main problem today is that brain tumors have many types, therefore research on the classification of brain tumor types is very valuable today. In order to improve accuracy and also speed up the diagnosis process. The results of this study, brain tumor image data classification has been carried out using the CNN Algorithm method with the CRISP-DM data mining technique. The dataset consists of 3,554 datasets, but from the results of testing this algorithm has good performance with an accuracy of 98% with Evaluation and validation using the Confusion Matrix test parameters. and successfully classified human brains affected by tumors and those not affected by tumors, in addition to being able to classify 3 different types of tumors, namely glioma, meningioma, and pituitary.

References

[1]. Husen, D. (2024). Klasifikasi Citra MRI Tumor Otak Menggunakan Metode Convolutional Neural Network. Bit-Tech, 7(1),143–152. https://do i.org/10.32877/bt.v7i1.1576

[2]. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

[3]. Iqhrammullah, M., Refin, R. Y., Rasmi, R. I., Andika, F. F., Hajjah, H., Marlina, M., & Ningsih, R. (2023). Cancer in Indonesia: A bibliometric surveillance. Narra X, 1(2). https://doi.org/10.52225/narrax.v1i2.86

[4]. Badža, M. M., & Barjaktarović, M. C. (2020). Classification of brain tumors from mri images using a convolutional neural network. Applied Sciences (Switzerland), 10(6).https://doi.org/10.3390/app10061999

[5]. Prasetyo, S. Y., & Nabiilah, G. Z. (2023). PERBANDINGAN MODEL MACHINE LEARNING PADA KLASIFIKASI TUMOR OTAK MENGGUNAKAN FITUR DISCRETE COSINE TRANSFORM. Jurnal Teknologi Terpadu, 9(1), 29–34. https://journal.nurulfikri.ac.id/index.php/jtt

[6]. Laksono, P., Herliana., Prabowo, T., (2023). Deteksi Tumor Otak Melalui Penerapan GLCM dan Naïve Bayes Classification. Jurnal Ilmiah Intech, Vol. 41, No. 48, Mei 2023, pp. 41-48.

[7]. Wasil, M., Harianto., Fathurrahman (2022). Pengaruh Epoch pada Akurasi menggunakan Convolutional Neural Network untuk Klasifikasi fashion dan Furniture. Infotek : Jurnal Informatika Dan Teknologi, Vol. 5 No. 1, 53-61. https://dx.doi.org/10.29408/jit.v5i1.4393

[8]. Winnarto, M. N., Mailasari, M., & Purnamawati, A. (2024). Ekstraksi Fitur Dan Implementasi Machine Learning Untuk Klasifikasi Jenis Tumor Otak. In Jurnal (Vol. 6, Issue 1). http://ejournal.bsi.ac.id/ejurnal/index.php/infortech65

[9]. Bahrain, S., Simbolon, E., & Terusanti, P. (2024). Penyuluhan Gejala Tumor Otak Pada Siswi Smk Negeri 1 Balige

[10].Hasim Azari, Dwi Hartanti, & Aprilisa Arum Sari. (2024). Pengelompokan Produksi Padi dan Beras Provinsi Jawa Timur dengan Metode Agglomerative Hierarchical Clustering. Infotek: Jurnal Informatika Dan Teknologi, 7(2), 379–389. https://doi.org/10.29408/jit.v7i2.26016

[11].Dhewayani, F. N., Amelia, D., Alifah, D. N., Sari, B. N., Jajuli, M., HSRonggo Waluyo, J., Telukjambe Timur, K., Karawang, K., & Barat, J. (2022). Implementasi K-Means Clustering untuk Pengelompokkan Daerah Rawan Bencana Kebakaran Menggunakan Model CRISP-DM. Jurnal Teknologi Dan Informasi.https://doi.org/10.34010/jati.v12i1

[12].Nurhidayati, Yahya, Fathurrahman, L.M Samsu, Wajizatul Amnia. (2023). Implementasi Algoritma Naive Bayes Untuk Klasifikasi Penerima Beasiswa (Studi Kasus Universitas Hamzanwadi). Infotek : Jurnal Informatika Dan Teknologi, 6(1), 177-188. https://dx.doi.org/10.29408/jit.v6i1.7529

[13].Iskandar Mulyana, D., Ainur Rofik, M., & Ohan Zoharuddin Zakaria, M. (2022). Klasifikasi Kendaraan pada Jalan Raya menggunakan Algoritma Convolutional Neural Network ( CNN ).

[14].Al Adilah, T., & Azizah, Q. N. (2022). Klasifikasi Tumor Otak Menggunakan Ekstraksi Fitur HOG dan Support Vector Machine. In Jurnal (Vol. 4, Issue 1). http://ejournal.bsi.ac.id/ejurnal/index.php/infortech45

[15].Saiful, M., Samsu, L.M., Fathurrahman (2021). Sistem Deteksi Infeksi COVID-19 Pada Hasil X-Ray Rontgen menggunakan Algoritma Convolutional Neural Network (CNN). Infotek : Jurnal Informatika Dan Teknologi, Vol. 4 No. 2, 217-227. https://dx.doi.org/10.29408/jit.v4i2.3582

[16] A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025. doi: 10.29408/jit.v8i1.28323

Downloads

Published

15-07-2025

How to Cite

Sulaiman, H., Yuliani, Y., Yanto, Al Farobi, I., & Panggalih, K. (2025). Penerapan Model CRISP-DM Untuk Klasifikasi Tumor Otak Menggunakan Algoritma CNN. Infotek: Jurnal Informatika Dan Teknologi, 8(2), 469–476. https://doi.org/10.29408/jit.v8i2.31014

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.