Implementasi Logika Fuzzy Mamdani Dalam Klasifikasi Kategori Berat Badan Berbasis IMT

Authors

  • Matelda Yunanta Ambon Universitas Mulawarman
  • Juniver Veronika Lili Universitas Mulawarman
  • Victor Bandhaso Universitas Mulawarman
  • Masna Wati Universitas Mulawarman
  • Anindita Septiarini Universitas Mulawarman

DOI:

https://doi.org/10.29408/jit.v8i2.30637

Keywords:

Fuzzy Mamdani, BMI, Classification, Gender, Weight, Age

Abstract

Body Mass Index (BMI) is a common method used to classify body weight based on the ratio of weight to height. However, its accuracy is often questioned because it does not account for age and gender, which also influence body composition. This study implements the Mamdani fuzzy logic approach to classify body weight based on BMI while considering age and gender. The system utilizes fuzzy membership functions to dynamically determine categories such as Underweight, Normal, Overweight, and Obese, and is developed using the Python programming language with interactive visualizations. Testing results show that the system can provide more adaptive and personalized classifications. Defuzzification values, such as 59.48 for a BMI of 24.22, indicate a classification consistent with WHO standards—namely, the Normal category. The system also demonstrates that classification results may vary for the same BMI when age or gender differs, as illustrated in multi-demographic visualizations. The centroid defuzzification method produces stable and representative outputs. Evaluation results show high accuracy, consistency in rule base, and an ability to handle data uncertainty. Thus, this system serves as a more flexible alternative to conventional methods in body weight classification.

Author Biographies

Juniver Veronika Lili, Universitas Mulawarman

Program Studi Informatika

Victor Bandhaso, Universitas Mulawarman

Program Studi Informatika

Masna Wati, Universitas Mulawarman

Program Studi Informatika

Anindita Septiarini, Universitas Mulawarman

Program Studi Informatika

References

[1] Abdulloh, H. K. (2023). Implementasi Logika Fuzzy Pada Body Mass Index. El Sains: Jurnal Elektro, 4(2), 29–34.

[2] Apriansyah, A., Fauzi, A., & Faisal, S. (2023). Penerapan Fuzzy Logic Untuk Menentukan Indeks Massa Tubuh (IMT) Berbasis Internet of Things (IoT). Jurnal Media Informatika Budidarma, 7(1), 292–299.

[3] Febriany, N., Agustina, F., & Marwati, R. (2018). Aplikasi Metode Fuzzy Mamdani Dalam Penentuan Status Gizi Dan Kebutuhan Kalori Harian Balita Menggunakan Software MATLAB. Jurnal EurekaMatika, 5(1), 93–100.

[4] Purnomo, A. S., & Sidiq, A. (2018). Sistem Pendukung Keputusan Untuk Menentukan Status Gizi Balita Menggunakan Metode Fuzzy Inferensi Sugeno Berdasarkan Metode Antropometri.

[5] Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338–353.

https://doi.org/10.1016/S0019-9958(65)90241-X

[6] Pratama, R. Amalia, dan S. Nurhidayat, "Implementasi Logika Fuzzy untuk Pemeriksaan Gizi Berdasarkan Indeks Massa Tubuh," Jurnal CICES, vol. 11, no. 1, pp. 57–69, 2025.

[7] Rustam, Y. W. A., & Gunawan, H. (2021). Perancangan Aplikasi Perhitungan Kebutuhan Kalori Tubuh Harian Berdasarkan Asupan Konsumsi Makanan Menggunakan Logika Fuzzy. Jurnal Informasi, 9(1). https://ojs.stmik- im.ac.id/index.php/INFORMASI/article/view/174

[8] Astuti, D., & Handayani, S. R. (2023). Implementasi Fuzzy Mamdani Dalam Sistem Monitoring Kesehatan Berbasis IoT. Jurnal Teknologi Informasi, 11(1),15–22.

[9] Faradisa, I. S., Muhammad, R. P., & Girindraswari, D. A. (2022). A Design of Body Mass Index (BMI) and Body Fat Percentage Device Using Fuzzy Logic. Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics, 4(2), 94-106.

[10] L. Zhang, H. Wang, and J. Liu, "Triangular and trapezoidal membership functions in fuzzy BMI classification systems," Fuzzy Sets and Systems, vol. 420, pp. 45-62, 2021.

[11] L. Zhang, M. Chen, and R. Anderson, "Comparative analysis of membership functions for body weight classification,"

IEEE Transactions on Fuzzy Systems, vol. 29, no. 8, pp. 2341-2352, 2021.

[12] D. Aulia and W. Warisa, “Menentukan Tingkat Produksi Bakso Dari Tahun 2019-2020 Dengan Teknik Artificial Intelligence Menggunakan Metode Fuzzy Mamdani,” Jurnal INFOTEK (Jurnal Informatika dan Teknologi), vol. 4, no. 1, pp. 11–18, 2021, doi: 10.29408/jit.v4i1.3058.

[13] S. M. Arif Mardhavi, Andreas Nugroho Sihananto, dan Afina Lina Nurlaili, "Implementasi Logika Fuzzy Untuk Pemeriksaan Gizi Berdasarkan IMT Pada Aplikasi Fitpriority," CICES (Cyberpreneurship Innovative and Creative Exact and Social Science), vol. 11, no. 1, pp. 57–69, Feb. 2025, doi: 10.33050/cices.v11i1.3502.

[14] B. A. C. Permana and I. K. D. Patwari, “Komparasi Metode Klasifikasi Data Mining Decision Tree dan Naïve Bayes Untuk Prediksi Penyakit Diabetes,” Jurnal INFOTEK (Jurnal Informatika dan Teknologi), vol. 4, no. 1, pp. 1–10, 2021, doi: 10.29408/jit.v4i1.2994.

[15] Apriansyah, A. Fauzi, dan S. Faisal, "Penerapan Fuzzy Logic Untuk Menentukan Indeks Massa Tubuh (IMT) Berbasis Internet of Things (IoT)," Jurnal Manajemen Informatika dan Bisnis, vol. 3, no. 2, pp. 45–52, 2021.

[16] S. Johnson and P. Williams, "Validation methodologies for fuzzy logic systems in healthcare applications," Journal of Biomedical Informatics, vol. 108, pp. 103-115, 2020

[17] A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025. doi: 10.29408/jit.v8i1.28323

Downloads

Published

15-07-2025

How to Cite

Ambon, M. Y., Lili, J. V., Bandhaso, V., Wati, M., & Septiarini, A. (2025). Implementasi Logika Fuzzy Mamdani Dalam Klasifikasi Kategori Berat Badan Berbasis IMT. Infotek: Jurnal Informatika Dan Teknologi, 8(2), 606–617. https://doi.org/10.29408/jit.v8i2.30637

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.