Klasifikasi Motif Batik Nusantara Menggunakan Vision Transformer (ViT) Berbasis Deep Learning

Authors

  • Imam Fathurrahman Universitas Hamzanwadi https://orcid.org/0000-0002-6151-0851
  • Muhammad Djamaluddin Universitas Hamzanwadi
  • Zaenul Amri Universitas Hamzanwadi
  • M. Nurul Wathani Universitas Hamzanwadi

DOI:

https://doi.org/10.29408/jit.v8i2.31108

Keywords:

Batik, Vision Transformer, Deep Learning, Image Classification, Cultural Preservation

Abstract

Batik is a cultural heritage of Indonesia that reflects local philosophies and identities through its diverse motifs. In the digital era, automatic classification of batik patterns plays a crucial role in cultural preservation, education, and commercialization. This study aims to develop a batik motif classification system using Vision Transformer (ViT), a deep learning architecture based on self-attention capable of capturing global spatial relationships in images. The dataset comprises 800 images spanning 20 batik motif classes from various regions, divided into training and testing subsets. The ViT model was fine-tuned using pretrained weights from ImageNet-21k, with standard preprocessing and data augmentation applied to the training set. Model performance was evaluated using accuracy, precision, recall, F1-score, confusion matrix, and prediction visualization. Results indicate that ViT achieved an overall accuracy of 96%, with most classes recording F1-scores above 0.90. Evaluation on unseen batik images demonstrated excellent generalization capability, achieving 99.94% confidence in prediction. These findings suggest that ViT is an effective and efficient architecture for batik motif classification and offers valuable contributions to cultural preservation through artificial intelligence.

References

[1] M. M. A. Wona et al., “Klasifikasi Batik Indonesia Menggunakan Convolutional Neural Network (CNN),” Jurnal Rekayasa Teknologi Informasi (JURTI), vol. 7, no. 2, p. 172, Dec. 2023, doi: 10.30872/jurti.v7i2.13694.

[2] M. Wibowo, P. Paradise, and R. F. Alya, “Classification Of Batik Motif Using Transfer Learning On Convolutional Neural Network (CNN),” Jurnal Teknik Informatika (Jutif), 2023, doi: 10.52436/1.jutif.2023.4.1.564.

[3] B. S. Negara, E. Satria, S. Sanjaya, and D. R. D. Santoso, “ResNet-50 for Classifying Indonesian Batik with Data Augmentation,” 2021 International Congress of Advanced Technology and Engineering (ICOTEN), pp. 1–4, 2021, doi: 10.1109/ICOTEN52080.2021.9493488.

[4] A. Dosovitskiy et al., “an Image Is Worth 16X16 Words: Transformers for Image Recognition At Scale,” ICLR 2021 - 9th International Conference on Learning Representations, 2021.

[5] M. N. Achmadiah, C.-C. Sun, W. Kuo, and N. Setyawan, “Multi-Stage Vision Transformer for Batik Classification,” 2024 International Electronics Symposium (IES), pp. 449–453, 2024, doi: 10.1109/ies63037.2024.10665807.

[6] N. Abd Manap, L. Xiao Xuan, K. Kumar Singh, A. Sheikh Akbari, and A. Putra, “Classification of Malaysian and Indonesian Batik Designs Using Deep Learning Models,” Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 16, no. 4, pp. 23–30, Dec. 2024, doi: 10.54554/jtec.2024.16.04.004.

[7] L. Elvitaria et al., “A Data-Driven Approach for Batik Pattern Classification Using Convolutional Neural Networks (CNN),” Semarak International Journal of Electronic System Engineering, 2024, doi: 10.37934/sijese.4.1.2230.

[8] E. Sugiarto, A. Fahmi, and F. Budiman, “Implementation of Deep Learning Based on Convolution Neural Network for Batik Pattern Recognition,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 2025, doi: 10.22219/kinetik.v10i1.2019.

[9] A. Y. Wicaksono, N. Suciati, C. Fatichah, K. Uchimura, and G. Koutaki, “Modified Convolutional Neural Network Architecture for Batik Motif Image Classification,” IPTEK Journal of Science, vol. 2, no. 2, 2017, doi: 10.12962/j23378530.v2i2.a2846.

[10] A. Hardirega and I. Jaelani, “Implementasi Convolutional Neural Network ( CNN ) Klasifikasi Motif Batik Menggunakan Efficientnet-B1,” vol. 8, no. 5, pp. 10023–10028, 2024.

[11] K. Azmi, S. Defit, and S. Sumijan, “Implementasi convolutional neural network (CNN) untuk klasifikasi batik tanah liat sumatera barat,” Jurnal Unitek, vol. 16, no. 1, pp. 28–40, 2023.

[12] K. B. Obaid, S. Zeebaree, O. M. Ahmed, and others, “Deep learning models based on image classification: a review,” International Journal of Science and Business, vol. 4, no. 11, pp. 75–81, 2020.

[13] Imam Fathurrahman, Mahpuz, Muhammad Djamaluddin, Lalu Kerta Wijaya, and Ida Wahidah, “Pengembangan Model Convolutional Neural Network (CNN) untuk Klasifikasi Penyakit Kulit Berbasis Citra Digital,” Infotek: Jurnal Informatika dan Teknologi, vol. 8, no. 1, pp. 298–308, Jan. 2025, doi: 10.29408/jit.v8i1.28655.

[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.

[15] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network learning for speech recognition and related applications: An overview,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2013, pp. 8599–8603. doi: 10.1109/ICASSP.2013.6639344.

[16] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training data-efficient image transformers & distillation through attention,” in Proceedings of Machine Learning Research, M. Meila and T. Zhang, Eds., in Proceedings of Machine Learning Research, vol. 139. PMLR, 2021, pp. 10347–10357.

[17] I. Fathurrahman and I. Gunawan, “Pengenalan Citra Logo Kendaraan Menggunakan Metode Gray Level Co-Occurence Matrix (Glcm) dan Jst-Backpropagation,” Infotek : Jurnal Informatika dan Teknologi, vol. 1, no. 1, pp. 47–55, Jan. 2018, doi: 10.29408/jit.v1i1.894.

[18] I. Fathurrahman and F. Fathurrahman, “Klasifikasi Penentuan Penerima Program Keluarga Harapan (PKH) Menggunakan Algoritma Support Vector Machine (Svm) Pada Kantor Dinas Sosial Lombok Timur,” Infotek : Jurnal Informatika dan Teknologi, vol. 3, no. 1, pp. 27–31, Feb. 2020, doi: 10.29408/jit.v3i1.1802.

[19] I. Fathurrahman, A. M. Nur, and F. Farhurrahman, “Identifikasi Kematangan Buah Mentimun Berbasis Citra Digital Menggunakan Jaringan Syaraf Tiruan Backpropagation,” Infotek: Jurnal Informatika dan Teknologi, vol. 2, no. 1, pp. 27–33, Jan. 2019, doi: 10.29408/jit.v2i1.976.

[20] R. C. Gonzalez and R. Woods, “Digital image processing: Pearson education india,” Digital image processing: Pearson education india, 2009.

[21] HendryHB, “Batik Nusantara (Batik Indonesia) Dataset,” 2024, Kaggle. doi: 10.34740/KAGGLE/DSV/7641980.

Downloads

Published

15-07-2025

How to Cite

Fathurrahman, I., Djamaluddin, M., Amri, Z., & Wathani, M. N. (2025). Klasifikasi Motif Batik Nusantara Menggunakan Vision Transformer (ViT) Berbasis Deep Learning. Infotek: Jurnal Informatika Dan Teknologi, 8(2), 511–522. https://doi.org/10.29408/jit.v8i2.31108

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.