Pengenalan Citra Logo Kendaraan Menggunakan Metode Gray Level Co-Occurence Matrix (Glcm) dan Jst-Backpropagation
DOI:
https://doi.org/10.29408/jit.v1i1.894Keywords:
Computer vision, Image Processing, Template Matching, Feature Extraction, ANN-Backpropagation, GLCMAbstract
A car is a vehicle that has a varied shape or model but the difference is the brand or logo. Vehicle logos have their own meaning and meaning for car industry companies. The logo should have a practical and effective or efficient function so that the logo form is part of the marketing and branding program of the car industry company [1]. There are three types of car logos that are now known, in the form of symbols, text, or a combination between the two. The logo is always in the front and back of the car body and usually has a lighter color than the color of the vehicle. One that supports the development of technology is how to recognize a vehicle either from the brand, shape, model and color of the vehicle. Some references that are deemed feasible to help this research include utilizing the weaknesses and weaknesses of the results of previous research, including a paper entitled. Scale Invariant Feature Transform (SIFT) [2]. SIFT is combined with Logistic Regression [3] based on Gradient Orientation Histogram (HOG). Logo Recognition Using Probabilistic Neural Networks [4]. Therefore, the researchers wanted to focus on the logo recognition using the extraction of the Gray Level Co-occurrence Matrix (GLCM) feature. Testing and training testing using ANN-Backpropagation. From the results of this study the best accuracy obtained 95.7%, so that GLCM and ANN-Backpropagation can recognize the image of the vehicle logo.
DOI : 10.29408/jit.v1i1.894
References
H Firdananda W et al,"Pengaruh Ekuitas Merek Terhadap Proses Pengambilan Keputusan Pembelian Motor Honda Beat di Dealer Garuda Motor I Kecamatan Gambiran Kabupaten Banyuwangi", Jurnal Pendidikan Ekonomi: ISSN 1907-9990| E-
ISSN 2548-7175 volume 11 n0.1.2017
Psyllos A.P et al, “Vehicle Logo Recognition Using a SIFT-Based Enhanced Matching Schemeâ€. IEEE. 2010
Chen R et al,"Vehicle Logo Recognition by Spatial-SHIFT Combined with Logistic Regression",International conference on information fusion.2016
Yuniarti A, et al, “Pengenalan merek mobil berbasis deteksi plat dan logo menggunakan jaringan syaraf probabilisticâ€. Konferensi Nasional system dan informatika. 2011.
Listia R et al,"Klasifikasi Massa pada Citra Mammogram berdasarkan Gray Level Co- occurance Matrix (GLCM)",IJCCS, ISSN:1978-1520, Vol.8 No.1.UGM.2014
Lihayati N et al, "Klasifikasi Jenis Daging Berdasarkan Tekstur Menggunakan Metode Gray Level Co-occurance Matrix",Prosiding SENTIA 2016, ISSN:2085-2347 vol.8,Politeknik Negeri Malang.2016
Febrianto, Y. “Pengklasifikasian Kualitas Keramik Berdasarkan Ekstraksi Fitur Tekstur Statistikâ€, Jurusan Teknik Informatika Fakultas Teknologi Industri Universitas Gunadarma, 2012
Ganis, K.Y et al, “Klasifikasi Citra Dengan Matriks Ko-Okurensi Aras Keabuan (Gray Level Co-Occurrence Matrix-GLCM) Pada Lima Kelas Biji-Bijianâ€, Undergraduate thesis, Jurusan Teknik Elektro Fakultas Teknik Undip, 2011
[ 9] Zakaria M F, Suandi S A., “Malaysian Car Number Plate Detection System Based on Template Matching and Colour Informationâ€. IJCSE, 2010.
Putra D, Pengolahan Citra Digital. Yogyakarta: Andi, 2010.
Nixon M. S. and Aguado A. S., Feature Extraction and Image Processing, First ed. London: Newnes, 2002.
Wulanningrum R dan Rachmad A, “Pengenalan Rumput Laut Menggunakan Euclidean Distance Berbasis Eksraksi fiturâ€. SNATi 2012
Pratt, William K. Digital Image Processing Second Edition. New York: John Wiley & Sons, Inc., 1991
T Sutoyo et al, Teori Pengolahan Citra Digital. Yogyakarta: Andi, 2009.
Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing Second Edition. USA: Prentice-Hall, 2002.
Fausett, L. Fundamentals of Neural Networks, Architectures, Algorithms and applications. New Jersey: Prentice-Hall. (1994)
Fu, L. M, Neural Networks in Computer Intelligence. McGraw-Hill International. (1994).
Siang, J. J. (2009). Jaringan Syaraf Tiruan & Pemrogramannya. Yogyakarta: Andi.
Zettl. Herbert, “Video Basicsâ€, Canada, 2010
Kusuma, A.A. et al, “Pengenalan Iris Mata Menggunakan Pencirian Matriks Ko- Okurensi Aras Keabuanâ€, Undergraduate thesis, Jurusan Teknik Elektro Fakultas Teknik., 2011
Albregtsen, F. “Statistical Texture Measures Computed from Gray Level Coocurrence Matricesâ€, Image Processing Laboratory, Department of Informatics, University of Oslo, 2008
Agustin M. “Penggunaan Jaringan Syaraf Tiruan Backpropagation untuk Seleksi Penerimaan Mahasiswa Baru Teknik computer di Politeknik Negeri Sriwijayaâ€. Magister teknik informatika undip, 2012
Downloads
Published
How to Cite
Issue
Section
License
Semua tulisan pada jurnal ini menjadi tanggung jawab penuh penulis. Jurnal Infotek memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Infotek ini dapat diakses dan diunduh secara gratis, tanpa dipungut biaya sesuai dengan lisense creative commons yang digunakan.Jurnal Infotek is licensed under a Creative Commons Attribution 4.0 International License.
Statistik Pengunjung