Identifikasi Kematangan Buah Mentimun Berbasis Citra Digital Menggunakan Jaringan Syaraf Tiruan Backpropagation

Authors

  • imam fathurrahman Universitas Hamzanwadi
  • Amri Muliawan Nur Universitas Hamzanwadi
  • Fathurrahman Farhurrahman Universitas Hamzanwadi

DOI:

https://doi.org/10.29408/jit.v2i1.976

Keywords:

Image processing, Backpropagation Neural Network, GLCM, Extraction Characteristics, Cucumber maturity

Abstract

Cucumber, cucumber, or cucumber (Cucumis sativus L) are plants that produce edible fruit. Especially in NTB cucumber production in 2015 reached 5,224 tons with a harvest area of 326 hectares. It is at number five after onions, chili, tomatoes and cabbage [2]. There are several parameters that can affect the quality of cucumbers, one of which is the shape, level of planting age and maturity [5]. Maturity of cucumbers can be recognized physically in terms of skin texture and color. The identification process of physical properties conventionally still has many disadvantages including the time needed is relatively long and produces a variety of products due to the limitations of human visuals. This becomes an obstacle so that it requires the application of computer image processing technology, especially in agriculture. Because of this, the researchers proposed using GLCM as feature extraction and using Backpropagation artificial neural networks for testing and training so that the research resulted in an accuracy of 89.6%.

DOI : 10.29408/jit.v2i1.976

References

Winten KTI, Putra AAG, Lana W," Penampilan Tanaman Mentimun (cucumis sativus, L) Akibat Perlakuan Pupuk Urea dan Jumlah Bibit Perlubang Tanam", Ps Agroteknologi Fakultas Pertanian Universitas Tabanan. Majalah Ilmiah UNTAB, Vo.12,No. 2,pp.87-204.ISSN 0216- 8537, September 2015.

Badan Pusat Statistik Provinsi Nusa TenggaraBarat, http://ntb.bps.go.id/linkTableDinamis/view/id/51, akses tanggal 15-06-2017.

Wijoyo PM. Budidaya Mentimun. Jakarta (ID): Pustaka Agro Indonesia. 2012.

Indah N et.al,"Cucumber (Cucumis sativus L.) relationship analysis using RAPD-PCR and isozyme methods", ISSN 1412-033X, 2008.

Kementerian pertanian. Artikel Budidaya dan Klasifikasi Varietas Mentimun. Melalui http://cybex.deptan.go.id/Timun.2008.

Permadi Y dan Murinto,"Aplikasi Pengolahan Citra untuk Identifikasi Kematangan Mentimun Berdasarkan Tekstur Kulit Buah Menggunakan Metode Ekstraksi Ciri Statistik",Univesitas Ahmad Dahlan.Jurnal Informatika, vol.9,No.1, Jan 2015.

Vadivel, A., Sural, S., and Majumdar, A.K, "An Integrated Color and Intensity Cooccurrence Matrix, Pattern Recognition Letters", Vol. 28, pp. 974- 983.2007.

Again, DG, Harahap, LA & Ppanggabean, S, "Identifikasi Kematangan Buah Markisa (Pssiflora Edulis) dengan Pengolahan Citra Menggunakan Jaringan Syaraf Tiruan", Fakultas Pertanian USU, Medan' 2015.

Warman, K, Harahap, LA, Munir, AP, Identifikasi Kematangan Buah Jeruk dengan Teknik Jaringan Syaraf Tiruan, Keteknikan Pertanian, Vol.3,No. 2, Thn. 2015, Medan.

Gustina S, Fadlil A dan Umar R,"Identifikasi Tanaman Kamboja Menggunakan Ekstraksi Ciri Citra Daun dan Jaringan Syaraf Tiruan", Universitas Ahmad Dahlan,Prosinding Annual Research,vol 2,No.1, ISBN: 979-587-626-0,Desmber 2016.

Cahyono, B. Timun. CV Aneka Ilmu,Semarang. 2006.

Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing Second Edition. USA: Prentice-Hall, 2002.

Wulanningrum R dan Rachmad A,“Pengenalan Rumput Laut Menggunakan Euclidean Distance Berbasis Eksraksi fiturâ€.SNATi 2012

Pratt, William K. Digital Image Processing Second Edition. New York: John Wiley & Sons, Inc., 1991

Putra D, Pengolahan Citra Digital.Yogyakarta: Andi, 2010.

Wijnarko T dan Putra A, “Pengenalan Wajah Dengan Matriks Kookurensi Aras Keabuan Dan Jaringan Syaraf Tiruan Probabilistikâ€.

Undergraduate thesis, Jurusan System Informasi, Undip, 2013

Kusuma, A.A. et al, “Pengenalan Iris Mata Menggunakan Pencirian Matriks Ko- Okurensi Aras Keabuanâ€, Undergraduate thesis, Jurusan Teknik Elektro Fakultas Teknik., 2011

Albregtsen, F. “Statistical Texture Measures Computed from Gray Level Coocurrence Matricesâ€, Image Processing Laboratory, Department of Informatics, University of Oslo, 2008

Febrianto, Y. “Pengklasifikasian Kualitas Keramik Berdasarkan Ekstraksi Fitur Tekstur Statistikâ€, Jurusan Teknik Informatika Fakultas Teknologi Industri Universitas Gunadarma, 2012

Ganis, K.Y et al, “Klasifikasi Citra Dengan Matriks Ko-Okurensi Aras Keabuan (Gray Level Co-Occurrence Matrix-GLCM) Pada Lima Kelas Biji- Bijianâ€, Undergraduate thesis, Jurusan Teknik Elektro Fakultas Teknik Undip, 2011

Kadir, A. et al, “Neural Network Application on Foliage Plant Identificationâ€, International Journal of Computer Application (0975-8887),Vol.29. No.9,15-22, 2011

Fausett, L. Fundamentals of Neural Networks, Architectures, Algorithms and applications. New Jersey: Prentice-Hall. (1994)

Fu, L. M, Neural Networks in Computer Intelligence. McGraw-Hill International.(1994).

Downloads

Published

29-01-2019

How to Cite

fathurrahman, imam, Nur, A. M., & Farhurrahman, F. (2019). Identifikasi Kematangan Buah Mentimun Berbasis Citra Digital Menggunakan Jaringan Syaraf Tiruan Backpropagation. Infotek: Jurnal Informatika Dan Teknologi, 2(1), 27–33. https://doi.org/10.29408/jit.v2i1.976

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.