Perancangan Sistem Rekomendasi Adaptif Latihan dan Nutrisi Berbasis Reinforcement Learning

Authors

  • Rifai Alinza Putra -
  • Angga Putra Laziman Sadiarta
  • Satria Baihaqi Yaasiin
  • Syifa Nur Rakhmah
  • Findi Ayu Sariasih

DOI:

https://doi.org/10.29408/jit.v9i1.32968

Keywords:

Adaptif, Deep Q-Network, Reinforcement Learning, Sistem Rekomendasi, , Sequential Decision-Making

Abstract

This research aims to design and develop a personalized Adaptive Exercise and Nutrition Recommendation System, using a Reinforcement Learning (RL) approach, to overcome the limitations of conventional fitness programs that are generic and static. Unhealthy lifestyle trends have increased non-communicable diseases, but available wellness solutions fail to adapt in real-time to users' dynamic conditions—such as fatigue levels, weight changes, or nutritional responses—making them a major factor in consistent failure. This research adopts the Design Science Research Methodology (DSRM) methodology. The main problem is solved through designing an intelligent system architecture that is capable of managing and processing dynamic user data. The Deep Q-Network (DQN) algorithm is implemented effectively to produce optimal and personalized training and nutrition program recommendations on an ongoing basis. The system is trained and evaluated using synthetic data to enable simulation of complex feedback scenarios and address sensitive data privacy issues. The research output is a functional prototype (Proof-of-Concept) which will be analyzed and evaluated for its performance comparatively with conventional fitness programs to measure the level of program optimization and user consistency.

References

[1] Sobri muhammad et al, “Systematic literature review untuk membuat model aplikasi pemantauan kesehatan cardiovascular,” vol. 2, no. 2, pp. 458–464, 2018.

[2] R. A. Putra, “Analisis deep q-network (DQN) untuk simulasi lampu lalu lintas adaptif berdasarkan waktu tunggu kendaraan,” 2024.

[3] Waisen et al., “Perancangan sistem rekomendasi kurikulum personal berbasis CLT dan RL untuk edukasi daring,” vol. 14, pp. 1189–1198, 2025.

[4] M. Rizqi and A. Zayyad, “Penerapan metode deep learning pada sistem rekomendasi film”.

[5] A. D. Hartono and J. Sutopo, “Implementasi algoritma upper confidence bound untuk sistem rekomendasi musik,” pp. 82–90, 2024, doi: 10.33364/algoritma/v.21-2.2095.

[6] Kurniawan Denni et.al, “Sistem rekomendasi keterampilan dengan metode user-based collaborative filtering dan tanimoto coefficient similarity sesuai . sehingga banyak para pencari kerja yang tidak update terhadap jenis menggunakan teknik user based collaborative filtering dan tan,” vol. XVI, pp. 52–62, 2021.

[7] Sartika Devi et. al, “Analisis kinerja sistem rekomendasi yang menggunakan collaborative filtering berdasarkan pengguna dengan python,” vol. 3, no. 1, pp. 4686–4696, 2025.

[8] Wijayanto Ardhi et. al, “Recomendation system with content-based filtering method for culinary tourism in,” vol. 8, no. 2, pp. 65–72, 2019.

[9] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems : A survey of the state-of-the-art and possible extensions,” vol. 17, no. 6, pp. 734–749, 2005.

[10] S. V. K. et Al., “Sistem rekomendasi resep masakan menggunakan metode content based filtering berdasarkan preferensi pengguna,” vol. 8, no. 2, pp. 345–355, 2025.

[11] Komarudin Alim et.al, “Jurnal olahraga indragiri,” vol. 10, no. 08, pp. 97–109, 2023.

[12] M. Huang and R. T. Rust, “Artificial intelligence in service,” vol. 21, no. 2, pp. 155–172, 2018, doi: 10.1177/1094670517752459.

[13] A. S. Pratikno, “Implementasi artificial intelligence dalam memetakan karakteristik , kompetensi , dan perkembangan psikologi siswa sekolah dasar melalui platform offline implementasi artificial intelligence dalam memetakan karakteristik , kompetensi , dan perkembangan ps,” no. September 2017, 2018.

[14] A. Raup, W. Ridwan, Y. Khoeriyah, and Q. Y. Zaqiah, “Deep learning dan penerapannya dalam pembelajaran,” vol. 5, no. September, pp. 3258–3267, 2022.

[15] J. Andreanus and A. Kurniawan, “Sejarah , teori dasar dan penerapan reinforcement learning : Sebuah tinjauan pustaka,” vol. 12, no. 2, pp. 113–118, 2020.

[16] R. Febrian, E. Setiawan, and B. H. Prasetio, “Simulasi metode dueling double deep q-learning pada unmanned aerial vehicle untuk menghindari halangan,” vol. 6, no. 3, pp. 1499–1506, 2022.

[17] D. Murdiani, A. Yudhana, T. Informatika, and U. A. Dahlan, “Implementasi agile method dalam pengembangan jurnal elektronik di lembaga penelitian non pemerintahan (NGO) implementation of agile method in development of electronic journal in non government research institution (NGO),” vol. 7, no. 4, pp. 709–718, 2020, doi: 10.25126/jtiik.202071839.

[18] H. Santoso, D. Pungki, A. Aziz, and A. Zaini, “Implementasi agile scrum pada proses pengembangan aplikasi monitoring MBKM di UNIKAMA,” vol. 4, no. 4, pp. 208–215, 2022.

[19] D. A. Wasesha, “Implentasi scrum framework pada informasi pemesanan jasa inspeksi mobil bekas,” vol. 7, no. 3, pp. 842–853, 2023, doi: 10.52362/jisamar.v7i3.903

[20] A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025. doi: 10.29408/jit.v8i1.28323

Downloads

Published

20-01-2026

How to Cite

Putra, R. A., Sadiarta, A. P. L., Yaasiin, S. B., Rakhmah, S. N., & Sariasih, F. A. (2026). Perancangan Sistem Rekomendasi Adaptif Latihan dan Nutrisi Berbasis Reinforcement Learning. Infotek: Jurnal Informatika Dan Teknologi, 9(1), 105–115. https://doi.org/10.29408/jit.v9i1.32968

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.