Program Dekonvolusi Blind Berbasis Matlab untuk Mempertajam Citra Akibat Simulasi Efek Buram Lensa
DOI:
https://doi.org/10.29408/kpj.v7i1.20281Keywords:
Aquiver Discharge, Geoelectric, SchlumbergerAbstract
Blurred image due to lens defocus can be simulated mathematically as a convolution result between sharp image and Point Spread Function of blur (unfocus) lens. Image sharpening is the opposite of image blurring which can be done by deconvolution. This research was conducted to simulate digital image sharpening using the Blind deconvolution method. The Point Spread Function of the lens effect is used as the deconvolution Kernel function. This Point Spread Function is modeled mathematically with the Gaussian function approach. Convolution results between digital images from photos of an object are convoluted with the point spread function to produce a blurry image. The blurry image is then sharpened using the Blind convolution method. The slight difference between the deconvolution result image and the original object photo image indicates that the program is running well. Peak Signal to Noise Ratio (PSNR) is used to determine image sharpening recovery. Optimal sharpening recovery from deconvolution iterations is obtained at the maximum PSNR valueReferences
Bahat, Y.; Efrat, N.; Irani, M. Non-uniform Blind Deblurring by Reblurring. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3306–3314.
Brylka, R.; Schwanecke, U.; Bierwirth, B. Camera Based Barcode Localization and Decoding in Real-World Applications. In Proceedings of the 2020 International Conference on Omni-layer Intelligent Systems (COINS), Barcelona, Spain, 31 August–2 September 2020; pp. 1–8.
Darma Putra, Pengolahan Citra Digital, Westriningsih , Ed. Yogyakarta: Andi, 2010.
Dian Eka Apriliyani, "Analisis Kinerja Metode Blind Dan Blind Deconvolution," Jurnal Rekayasa Teknologi, vol. 22, no. 1, pp. 62-69, April 2017.
Fiori, S. Fast fixed-point neural Blinddeconvolution algorithm. IEEE Trans. Neural Netw. 2004, 15, 455–459.
Lai, W.; Huang, J.; Hu, Z.; Ahuja, N.; Yang, M. A Comparative Study for Single Image Blind Deblurring. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1701–1709.
Levin, A.; Weiss, Y.; Durand, F.; Freeman, W.T. Understanding Blind Deconvolution Algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2354–2367.
Lou, Y.; Esser, E.; Zhao, H.; Xin, J. Partially Blind Deblurring of Barcode from Out-of-Focus Blur. SIAM J. Imaging Sci. 2014, 7,740–760.
Mai Sarah Sujiah, "Aplikasi Perbaikan Fase Citra Untuk Mempertajam Citra Menggunakan metode Fourier Phase Only Synthesis," Jurnal Ilmiah INFOTEK, vol. 1, no. 1, pp. 99-105, februari 2016.
Seli Widiastuti, Dewi Agushinta R Dini Sundani, "Aplikasi Penajaman Citra (Image Sharpening) Berdasarkan Prinsip Kuantum," Pro siding Seminar Nasional Aplikasi Sains & Teknologi (SNAST), p. 201, November 2014.
Srinivasan, P.P.; Ng, R.; Ramamoorthi, R. Light Field Blind Motion Deblurring. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2354–2362.
Sutoyo, T., Teori Pengolahan Citra Digital, 1st ed., Benedicta Rini W, Ed. yogyakarta, Indonesia: C.V Andi OFFSET, 2010.
Vorontsov, S.V.; Jefferies, S.M. A new approach to blind deconvolution of astronomical images. Inverse Probl. 2017, 33, 055004.
Wiwien Hadikurniawati dan Zuli Budiarso Eka Ardhianto, "Implementasi Metode Image Subtracting dan Metode Regionprops untuk Mendeteksi Jumlah Objek Berwarna RGB pada File Video," Jurnal Teknologi Informasi DINAMIK, vol. 18, no. 2, pp. 91-100, July 2012.
Zhang, H.; Wipf, D.; Zhang, Y. Multi-image Blind Deblurring Using a Coupled Adaptive Sparse Prior. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1051–1058