Solusi Persamaan Dirac Untuk Potensial Manning Rosen Hyperbolik Plus Potensial Tensor Tipe Coulomb Pada Pseudospin Simetri Menggunakan Polynomial Romanovski

Authors

  • Kholida Ismatulloh Universitas Hamzanwadi
  • Yosi Nur Kholisho Universitas Hamzanwadi
  • Baiq Desi Dwi Arianti Universitas Hamzanwadi

DOI:

https://doi.org/10.29408/kpj.v8i3.28217

Keywords:

Dirac equation, Hyperbolic Rosen Manning potential, Coulomb-type tensor potential, Romanovski polynomials, Pseudospin Symmetry

Abstract

The relativistic energy and wave function for the hyperbolic Manning Rosen potential with Coulomb-type tensor potential in the case of pseudospin symmetry are obtained from solving the Dirac equation using the Romanovski polynomial method. Using the appropriate wave function and variable substitution to reduce the second-order differential equation to a hypergeometric-type equation, the Dirac equation can be solved using Romanovski polynomials. The relativistic energy equation and weight function for Romanovski polynomials are produced by comparing the standard differential and hypergeometric type equations. Relativistic energy can be determined by employing numerical techniques and Matlab software to solve the relativistic energy equation. The weight function yields the relativistic wave function, which is then represented for the lower component of Dirac spin in the form of Romanovski polynomials

References

Alvarez-Castillo, D. E. (2008). Exactly solvable potentials and Romanovski polynomials in quantum mechanics. ArXiv Preprint ArXiv:0808.1642.

Cari, C., Deta, U. A., & Werdiningsih, I. S. (2013). Solution of Dirac Equations for Cotangent Potential with Coulomb-type Tensor Interaction for Spin and Pseudospin Symmetries Using Romanovski Polynomials. Makara Journal of Science, 17(3), 4.

Chabab, M., Lahbas, A., & Oulne, M. (2012). Analytic L-state solutions of the Klein–Gordon equation for Q-deformed Woods–Saxon plus generalized ring shape potential for the two cases of equal and different mixed vector and scalar potentials. International Journal of Modern Physics E, 21(10), 1250087.

Falaye, B. J., & Ikhdair, S. M. (2013). Relativistic symmetries with the trigonometric Pöschl—teller potential plus Coulomb-like tensor interaction. Chinese Physics B, 22(6), 60305.

Greiner, W. (2011). Quantum mechanics: an introduction. Springer Science & Business Media.

Hidayatulloh, A. (2017). FUNGSI GELOMBANG SPIN SIMETRI UNTUK POTENSIAL SCARF HIPERBOLIK PLUS COULOMB LIKE TENSOR DENGAN MENGGUNAKAN METODE POLYNOMIAL ROMANOVSKI. JURNAL SANGKAREANG MATARAM, 3(1), 51–55.

Okon, I. B., Omugbe, E., Antia, A. D., Onate, C. A., Akpabio, L. E., & Osafile, O. E. (2021). Spin and pseudospin solutions to Dirac equation and its thermodynamic properties using hyperbolic Hulthen plus hyperbolic exponential inversely quadratic potential. Scientific Reports, 11(1), 892.

Tjia, M. O., & Sutjahja, I. M. (2012). Orbital Kuantum (Pengantar Teori dan Contoh Aplikasinya). Karya Putra Darwati. Bandung.

Weber, H. (2007). Connections between Romanovski and other polynomials. Open Mathematics, 5(3), 581–595.

Yanuarief, C. (2012). Analisis Energi Dan Fungsi Gelombang Potensial Non Sentral Rosen Morse Plus Hulthen, Rosen Morse, Dan Coulomb Menggunakan Polinomial Romanovski. UNS (Sebelas Maret University).

Downloads

Published

2024-12-27

Issue

Section

Articles