ISOLASI DAN KARAKTERISASI JAMUR SELULOLITIK DARI TANAH PERKEBUNAN TEBU DESA GUNUNG WARAS KABUPATEN WAY KANAN
DOI:
https://doi.org/10.29408/cob.v9i1.26869Abstract
Sugarcane production is increasing, but waste in sugarcane plantations is also increasing, in the form of unwanted leaves and residual sugarcane stalks, which have a high cellulose content. To handle this organic waste, biodegradation agents in the form of cellulolytic fungi can be used, so it is necessary to screen cellulolytic fungi that can thrive and adapt to the sugarcane plantation environment. Organic particles, or litter, become a place of life for microorganisms such as fungi, bacteria, and other organisms. The purpose of this study was to identify the types of cellulolytic fungi found in sugarcane plantation soil in Gunung Waras Village, Way Kanan Regency, examine the effect of temperature and pH fluctuations on these fungi, and test their pathogenicity to plants. This study produced two fungal isolates that have the ability to degrade cellulose, namely Cunninghamella sp. and Trichoderma sp., with cellulolytic indexes of 0.754 and 0.403, respectively. Both isolates were tolerant of several pH variations, and there were no significant differences at the 95% confidence interval in the mean mycelial biomass at pH 3, 5, and 7. They could grow well at 25°C but not at 45°C
References
Achmad, Nina Herliyana, E. & Octaviani, E.A. (2013). Pengaruh pH, Penggoyangan Media, dan Penambahan Serbuk Gergaji terhadap Pertumbuhan Jamur Xylaria sp. Jurnal Silvikultur Tropika, 04(02), 01–02.
Anggraeni, A., Istiqomah, L., Damayanti, E., Anwar, M., Sakti, A., & Karimy, M. (2018). Cellulolytic yeast from gastrointestinal tract of muscovy duck (Anas moscata) as probiotic candidate. Journal of the Indonesian Tropical Animal Agriculture. 43(4), 361- 372. https://doi.org/10.14710/jitaa.43.4.361-372
Barnett, H.L. & Hunter, B.B. (1998). Illustrated Genera of Imperfect Fungi. USA: APS Press.
El Baz, A.F., Shetaia, Y.M., Eldin, H.A., & Elmekawy, A. (2018). Optimization of Cellulase Production by Trichoderma viride using Response Surface Methodology. Current biotechnology. 7(1), 19-25.
Díaz, G. V., Coniglio, R. O., Chungara, C. I., Zapata, P. D., Villalba, L. L., & Fonseca, M. I. (2020). Aspergillus niger LBM 134 isolated from rotten wood and its potential cellulolytic ability. Mycology, 12(3),160–173. https://doi.org/10.1080/21501203.2020.1823509
Elfiati, D. Susilowati, A., Modes, C., Rachmat, H. H. (2019). Morphological and molecular identification of cellulolytic fungi associated with local raru species. Biodiversitas, 20(8), 2348–2354.
Ghazanfar, M.U., Raza, M., & Raza, W. (2018). Effect of Physiological Parameters on Mass Production of Trichoderma species. Pakistan Journal of Phytopathology. 30(1): 59-65.
Gomez-Mendez E., Brito-Vega H., Lopez-Ferrer U., Salaya-Dominguez J., Salinas-Hernandez R., Gomez-Vazquez A., Cruz-Hernandez A. (2020). The Morphological and Molecular Characterization of Trichoderma spp. Cocoa Agroforestry System Open Science Journal. 5(4): 1-14.
Hallur, V., Prakash, H., Sable, M., Preetam, C., Purushotham, P., Senapati, R., Shankarnarayan, S. A., Bag, N. D., & Rudramurthy, S. M. (2021). Cunninghamella arunalokei a New Species of Cunninghamella from India Causing Disease in an Immunocompetent Individual. Journal of fungi (Basel, Switzerland), 7(8), 670. https://doi.org/10.3390/jof7080670
Kementerian Pertanian Republik Indonesia. (2023). Statistik Perkebunan Unggulan Nasional 2021-2023. Jakarta: Kementerian Pertanian.
Li, N., Li, J., Chen, Y., Shen, Y., Wei, D., & Wang, W. (2023). Mechanism of Zn2+ regulation of cellulase production in Trichoderma reesei Rut-C30. Biotechnology for biofuels and bioproducts. 16(1). 73. https://doi.org/10.1186/s13068-023-02323-1
Li, Y., Yu, J., Zhang, P., Long, T., Mo, Y., Li, J., & Li, Q. (2021). Comparative transcriptome analysis of Trichoderma reesei reveals different gene regulatory networks induced by synthetic mixtures of glucose and β-disaccharide. Bioresources and bioprocessing, 8(1), 57. https://doi.org/10.1186/s40643-021-00411-4
Pitt, J.I. and Hocking, A.D. (2009). Fungi and Food Spoilage, London: Springer.
Sari, S.L.A., Setyaningsih, R. & Wibowo, N.F.A. (2017). Isolation and Screening of Cellulolytic Fungi from Salacca edulis Leaf Litter. Biodiversitas. 18(3): 1282–1288.
Seephueak, P., Preecha, C. & Seephueak, W. (2017). Isolation and Screening of Cellulolytic Fungi from Spent Mushroom Substrates. International Journal of Agricultural Technology. 13(5): 729–739.
Sinha, A, Harshita., Singh, R., Rao, S. G., Verma, A. (2018). Comprehensive evaluation of Trichoderma harzianum and Trichoderma viride on different culture media & at different temperature and pH. Pharma Innovation. 7(2):193-195.
Sumardi, Agustrina, R., Ekowati, C.N., & Pasaribu, Y.S. (2018). Characterization of Protease from Bacillus sp. on Medium Containing FeCl3 Exposed to Magnetic Field 0.2 MT, IOP Conference Series: Earth and Environmental Science. 130(1): 1–12.
Sutari, N.W.S. (2020). Isolasi dan Identifikasi Morfologi Jamur Selulolitik dari Limbah Rumah Tangga di Desa Sanur Kauh, Bali. Agrovigor: Jurnal Agroekoteknologi. 13(2): 100–105.
Wahidah, T.H., Mustikaningtyas, D., Widiatningrum, T., & Dewi, P. (2022). Pengaruh Faktor Lingkungan terhadap Pertumbuhan Trichoderma spp. dan Aktivitas Enzim Amilase dan Xilanase. Life Science. 11(2):108–119.
Watanabe, T. (2010). Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key to Species. 3 ed. London: CRC Press.
Zhang, Z., Zhao, Y., Shen, X., Chen, W., Han, Y., Huang, J., & Liang, Z. (2020). Molecular phylogeny and morphology of Cunninghamella guizhouensis sp. nov. (Cunninghamellaceae, Mucorales), from soil in Guizhou, China. Phytotaxa, 455, 31-
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.