Prediksi Tingkat Kelulusan Mahasiswa menggunakan Algoritma Naïve Bayes, Decision Tree, ANN, KNN, dan SVM
DOI:
https://doi.org/10.29408/edumatic.v7i2.18620Keywords:
ann, decision tree, knn, naïve bayes, svmAbstract
The student graduation rate in all universities can be measured by looking at their study duration, both on time and delayed. Thus, by observing the study duration, it can affect the quality of study programs in universities. The purpose of this research is to apply and compare the Naïve Bayes, Decision Tree, Artificial Neural Network, K-Nearest Neighbor (K-NN), and Support Vector Machine (SVM) algorithms in predicting the graduation rate of students. The dataset in this research consisted of 807 student data from the Faculty of Engineering, Universitas Hamzanwadi. The data analysis technique used was descriptive statistics by applying the knowledge discovery in a database (KDD) method. The testing of the five algorithms was done by optimizing the data using the SMOTEENN technique, with a data split of 80% for training and 20% for testing, using a random state of 42. Our findings show that the Naïve Bayes algorithm had an accuracy of 92.37%, Decision Tree 91.60%, K-NN 96.95%, SVM 93.13%, and ANN 90.84%. Among the five algorithms tested, the K-NN algorithm had the highest accuracy rate of 96.95%. The predicted results tended to indicate delayed graduation influenced by GPA. Therefore, the institution needs to pay more attention to students predicted to be delayed to improve their GPA each semester, thus promoting timely graduation within the expected time frame.
References
Abdullah, M. F., Kusrini, K., & Arief, M. R. (2022). Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Menggunakan Metode Svm (Studi Kasus: Universitas KH A Wahab Hasbullah Jombang. SAINTEKBU, 14(01), 35–44. https://doi.org/10.32764/saintekbu.v14i01.1096
Bisri, A., & Wahono, R. S. (2015). Penerapan Adaboost untuk penyelesaian ketidakseimbangan kelas pada Penentuan kelulusan mahasiswa dengan metode Decision Tree. Journal of Intelligent Systems, 1(1), 27–32.
Etriyanti, E., Syamsuar, D., & Kunang, N. (2020). Implementasi Data Mining Menggunakan Algoritme Naive Bayes Classifier dan C4. 5 untuk Memprediksi Kelulusan Mahasiswa. Telematika, 13(1), 56–67. https://doi.org/10.35671/telematika.v13i1.881
Hakim, L. A. R., Rizal, A. A., & Ratnasari, D. (2019). Aplikasi prediksi kelulusan mahasiswa berbasis k-nearest neighbor (k-nn). JTIM: Jurnal Teknologi Informasi Dan Multimedia, 1(1), 30–36. https://doi.org/10.35746/jtim.v1i1.11
Hasanah, M. A., Soim, S., & Handayani, A. S. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), 103–108. https://doi.org/10.30871/jaic.v5i2.3200
Hidayat, W., Utami, E., Iskandar, A. F., Hartanto, A. D., & Prasetio, A. B. (2021). Perbandingan Performansi Model pada Algoritma K-NN terhadap Klasifikasi Berita Fakta Hoaks Tentang Covid-19. Edumatic: Jurnal Pendidikan Informatika, 5(2), 167–176. https://doi.org/10.29408/edumatic.v5i2.3664
Juliansa, H. (2019). Data Mining Rough Set Dalam Menganalisa Kinerja Dosen Stmik Bina Nusantara Jaya Lubuklinggau. JUSIM (Jurnal Sist. Inf. Musirawas), 4(1), 11–17. https://doi.org/10.32767/jusim.v4i1.440
Kusrini, K., & Prasetio, A. B. (2020). Prediction of Student Graduation with Naive Bayes Algorithm. 2020 Fifth International Conference on Informatics and Computing (ICIC), 1–5.
Mulya, D. P. (2019). Analisa Dan Implementasi Association Rule Dengan Algoritma Fp-Growth Dalam Seleksi Pembelian Tanah Liat (Studi Kasus Di Pt. Anveve Ismi Berjaya). Jurnal Teknologi Dan Sistem Informasi Bisnis-JTEKSIS, 1(1), 47–57. https://doi.org/10.47233/jteksis.v1i1.6
Nofriansyah, D., & Nurcahyo, G. W. (2015). Algoritma Data Mining dan Pengujian. Yogyakarta: Deepublish.
Pramadhana, D. (2021). Klasifikasi Penyakit Diabetes Menggunakan Metode CFS Dan ROS dengan Algoritma J48 berbasis Adaboost. Edumatic: Jurnal Pendidikan Informatika, 5(1), 89-98. https://doi.org/10.29408/edumatic.v5i1.3336
Putra, H., & Walmi, N. U. (2020). Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation. Jurnal Nasional Teknologi Dan Sistem Informasi, 6(2), 100–107. https://doi.org/10.25077/TEKNOSI.v6i2.2020.100-107
Rahayu, S., Yumarlin, M. Z., Bororing, J. E., & Hadiyat, R. (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic: Jurnal Pendidikan Informatika, 6(1), 98–106. https://doi.org/10.29408/edumatic.v6i1.5433
Rizky, M., Ridha, A. A., & Prihandani, K. (2021). Penentuan Paket Promosi Pakaian PT. D&C Production dengan Menggunakan Algoritma FP-Growth. Edumatic: Jurnal Pendidikan Informatika, 5(2), 177–186. https://doi.org/10.29408/edumatic.v5i2.3714
Samuel, Y. T., Jonathan, B., & Naibaho, J. (2019). Memprediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree J48 Di Universitas Advent Indonesia. TeIKa, 9(1), 43–52. https://doi.org/10.36342/teika.v9i01.790
Sari, V., Firdausi, F., & Azhar, Y. (2020). Perbandingan Prediksi Kualitas Kopi Arabika dengan Menggunakan Algoritma SGD, Random Forest dan Naive Bayes. Edumatic: Jurnal Pendidikan Informatika, 4(2), 1–9. https://doi.org/10.29408/edumatic.v4i2.2202
Setiyorini, T., & Asmono, R. T. (2019). Penerapan Metode K-Nearest Neighbor Dan Information Gain Pada Klasifikasi Kinerja Siswa. JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), 5(1), 7-14. https://doi.org/10.33480/jitk.v5i1.613
Suardika, I. G. I. (2019). Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu Menggunakan Naive Bayes: Studi Kasus Fakultas Ekonomi Dan Bisnis Universitas Pendidikan Nasional. Jurnal Ilmu Komputer Indonesia, 4(2), 37-44. https://doi.org/10.23887/jik.v4i2.2775
Sumardi, R., & Efendi, S. (2021). Upaya Meningkatkan Kinerja Dengan Pendekatan Aplikasi Balance Scorecard Pada Perguruan Tinggi Swasta Di Jakarta. Populis: Jurnal Sosial Dan Humaniora, 4(2), 220–232. https://doi.org/10.47313/pjsh.v4i2.681
Suyanto. (2017). Data Mining untuk Klasifikasi dan Klasterisasi Data. Bandung: Informatika.
Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Penjualan Bisnis Ritel. Edumatic: Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081
Uska, M., Wirasasmita, R., Usuluddin, U., & Arianti, B. (2020). Evaluation of Rapidminer-Aplication in Data Mining Learning using PeRSIVA Model. Edumatic: Jurnal Pendidikan Informatika, 4(2), 164–171. https://doi.org/10.29408/edumatic.v4i2.2688
Zainuddin, M. (2018). Perbandingan 4 Algoritma Berbasis Particle Swarm Optimization (pso) Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa. Jurnal Ilmiah Teknologi Informasi Asia, 13(1), 1-12. https://doi.org/10.32815/jitika.v13i1.247
Zanuardi, A., & Suprayitno, H. (2018). Analisa karakteristik kecelakaan lalu lintas di jalan ahmad yani surabaya melalui pendekatan knowledge discovery in database. Jurnal Manajemen Aset Infrastruktur & Fasilitas, 2(1), 45-55. https://doi.org/10.12962/j26151847.v2i1.3767
Downloads
Published
Issue
Section
License
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.