Perbandingan Kinerja Model Convolutional Neural Network pada Klasifikasi Kanker Kulit




skin cancer, early detection, cnn algorithm, inceptionv3model, efficientnetb0 model


Skin cancer is one of the diseases that greatly affects the quality of human life and can be potentially bad if not detected and treated quickly. In an effort to improve the early detection and accuracy of skin cancer diagnosis, this study aims to design a skin cancer classification system using deep learning. The research method involves the use of deep learning-based artificial neural networks, especially convolutional neural networks (CNN), which have been proven effective in image processing. The images in the dataset include various types of skin cancer, including melanoma and basal cell carcinoma. In this study, a skin cancer classification system was built using The-HAM10000 Dataverse, utilizing the CNN algorithm and the performance of the system was modeled using InceptionV3, and EfficientNetB0. The results of these two methods on the dataset show that InceptionV3 has an accuracy of 0.7681, and EfficientNetB0 of 0.9809, the results of this accuracy make the EfficientNetB0 system better for skin cancer detection, so this finding makes that the accuracy at this level will classify as much as 327 data only, therefore the data trained and tested will produce an accuracy and error from its validation which makes EfficientNetB0 an option for classification based on the CNN method.


Agyenta, C., & Akanzawon, M. (2022). Skin Lesion Classification Based on Convolutional Neural Network. Journal of Applied Science and Technology Trends, 3(01), 14-19.

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., ... & Ghayvat, H. (2021). CNN variants for computer vision: History, architecture, application, challenges and future scope. Electronics, 10(20), 2470.

Duman, E., & Tolan, Z. (2021). Comparing popular CNN models for an imbalanced dataset of dermoscopic images. Computer Science, (Special), 192-207.

Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data. Frontiers in Energy Research, 9, 652801.

Gulakala, R., Markert, B., & Stoffel, M. (2022). Generative adversarial network based data augmentation for CNN based detection of Covid-19. Scientific Reports, 12(1), 19186.

Haq, D. Z. (2020). Klasifikasi Citra Kanker Kulit Menggunakan Convolutional Neural Network Model Googlenet. In Universitas Islam Negeri Sunan Ampel Surabaya.

Ibrahim, N., Lestary, G. A., Hanafi, F. S., Saleh, K., Pratiwi, N. K. C., Haq, M. S., & Mastur, A. I. (2022). Klasifikasi Tingkat Kematangan Pucuk Daun Teh menggunakan Metode Convolutional Neural Network. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10(1), 162 – 176.

Jignesh Chowdary, G., Punn, N. S., Sonbhadra, S. K., & Agarwal, S. (2020). Face mask detection using transfer learning of inceptionv3. In Big Data Analytics: 8th International Conference, BDA 2020, Sonepat, India, December 15–18, 2020, Proceedings 8 (pp. 81-90). Springer International Publishing.

Kim, J. H. (2022). Improvement of inceptionv3 model classification performance using chest X-ray images. Journal of Mechanics in Medicine and Biology, 22(08), 2240032.

Marques, G., Ferreras, A., & de la Torre-Diez, I. (2022). An ensemble-based approach for automated medical diagnosis of malaria using EfficientNet. Multimedia tools and applications, 81(19), 28061-28078.

Montalbo, F. J. P., & Alon, A. S. (2021). Empirical analysis of a fine-tuned deep convolutional model in classifying and detecting malaria parasites from blood smears. KSII Transactions on Internet and Information Systems, 15(1), 2021.

Nugroho, B., & Puspaningrum, E. Y. (2021). Kinerja Metode CNN untuk Klasifikasi Pneumonia dengan Variasi Ukuran Citra Input. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 8(3), 533-538.

Nurkhasanah, N., & Murinto, M. (2022). Klasifikasi Penyakit Kulit Wajah Menggunakan Metode Convolutional Neural Network. Sainteks, 18(2), 183–190.

Nurlitasari, D. A., Magdalena, R., & Fu'adah, R. Y. N. (2022). Analisis Performansi Sistem Klasifikasi Kanker Kulit Menggunakan Convolutional Neural Network. Journal Of Electrical and System Control Engineering, 5(2), 91-99.

Saputro, R. R., Junaidi, A., & Saputra, W. A. (2022). Klasifikasi Penyakit Kanker Kulit Menggunakan Metode Convolutional Neural Network (Studi Kasus: Melanoma). Journal of Dinda: Data Science, Information Technology, and Data Analytics, 2(1), 52-57.

Sarvamangala, D. R., & Kulkarni, R. V. (2022). Convolutional neural networks in medical image understanding: a survey. Evolutionary intelligence, 15(1), 1-22.

Sitompul, P., Okprana, H., & Prasetio, A. (2022). Identification of Rice Plant Diseases Through Leaf Image Using DenseNet 201: Identifikasi Penyakit Tanaman Padi Melalui Citra Daun Menggunakan DenseNet 201. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(2), 143–150.

Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR.

Tian, C., Xu, Y., Zuo, W., Du, B., Lin, C. W., & Zhang, D. (2021). Designing and training of a dual CNN for image denoising. Knowledge-Based Systems, 226, 106949.

Tuggener, L., Schmidhuber, J., & Stadelmann, T. (2022). Is it enough to optimize cnn architectures on imagenet?. Frontiers in Computer Science, 4, 1041703.

Yohannes, R., & Al Rivan, M. E. (2022). Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM. Jurnal Algoritme, 2(2), 133-144.