Optimasi Pelayanan Kapal Penumpang melalui Clustering Penumpang dengan Metode Silhouette Coefficient
DOI:
https://doi.org/10.29408/edumatic.v7i2.21067Keywords:
clustering, k-means algorithm, silhouette plot, data miningAbstract
Improving the efficiency of passenger ship services is a big challenge for the shipping industry. This research aims to optimize ship passenger services at Muara angke port by segmenting passengers using the Silhouette Coefficient method. This research uses the k-means algorithm and the Silhouette Coefficient method in order to get passenger clusters based on boarding passengers and disembarking passengers. The Silhouette Coefficient method in this research is used to find the number of clusters. The dataset used is passenger data from January 1 - December 31, 2021. The results showed that 2 clusters were obtained, namely the highest cluster (C1) and the lowest cluster (C2) from the k-means algorithm with the results of the centroid value obtained for cluster 1 passengers up, namely 53,414 and passengers down, namely 54,585, the centroid value obtained for cluster 2 passengers up, namely 596,396 and passengers down, namely 532,455. The value with the Silhouette Coefficient method is obtained 0.704 in cluster 1 for the highest cluster there are 2091 data with a percentage value of 57.27% and 0.548 in cluster 2 for the lowest cluster there are 1560 data with a presentation value of 42.73%. The Silhouette Coefficient value is close to the value of 1, which means that the Muara angke port is good enough in optimizing passenger services.
References
Abdullah, D., Susilo, S., Ahmar, A. S., Rusli, R., & Hidayat, R. (2022). The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data. Quality and Quantity, 56(3), 1283–1291. https://doi.org/10.1007/s11135-021-01176-w
Aditya, A., Jovian, I., & Sari, B. N. (2020). Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019. JURNAL MEDIA INFORMATIKA BUDIDARMA, 4(1), 51–58. https://doi.org/10.30865/mib.v4i1.1784
Arianto, D., & Sutrisno, A. (2021). Kajian Antisipasi Pelayanan Kapal dan Barang di Pelabuhan Pada Masa Pandemi Covid–19. Jurnal Penelitian Transportasi Laut, 22(2), 97–110. https://doi.org/10.25104/transla.v22i2.1682
Ashari, I. A., Negara, I. S. M., & Sumantri, R. B. B. (2022). Evaluasi Pembayaran Keuangan Siswa berdasarkan Penghasilan Wali Siswa menggunakan Metode Clustering K-Means. Edumatic: Jurnal Pendidikan Informatika, 6(2), 324–333.
Aziz, S. M., & Rifai, N. A. K. (2022). Pengelompokkan Ekspor Kopi Menurut Negara Tujuan Menggunakan Metode K-Means Clustering dengan Silhouette Coefficient. Bandung Conference Series: Statistics, 2(2), 416–424. https://doi.org/10.29313/bcss.v2i2.4536
Bagirov, A. M., Aliguliyev, R. M., & Sultanova, N. (2023). Finding compact and well-separated clusters: Clustering using silhouette coefficients. Pattern Recognition, 135. https://doi.org/10.1016/j.patcog.2022.109144
Dewi, A. M., & Hanty, F. (2022). Kualitas Sumber Daya Manusia Transportasi Laut Di Revolusi Industri 4.0 Menuju Era Pelabuhan Pintar. Majalah Ilmiah Bahari Jogja, 20(2), 204-210. https://doi.org/10.33489/mibj.v20i2.298
Dirang, M., & Iriani, I. (2021). Analisis Kualitas Pelayanan Terhadap Tingkat Kepuasan Pengguna Ruang Tunggu Penumpang Pelabuhan Tanjung Perak Dengan Metode Servqual Dan Triz. JUMINTEN, 2(1), 49–60. https://doi.org/10.33005/juminten.v2i1.141
Erwin, R. (2022). Tanggung Jawab Negara Untuk Mencegah Terjadinya Kecelakaan Kapal Transportasi Laut Menurut Hukum Internasional Dan Hukum Nasional. SUPREMASI : Jurnal Hukum, 4(2), 177–199. https://doi.org/10.36441/supremasi.v4i2.716
Fard, M. M., Thonet, T., & Gaussier, E. (2020). Deep k-Means: Jointly clustering with k-Means and learning representations. Pattern Recognition Letters, 138. https://doi.org/10.1016/j.patrec.2020.07.028
Fransiska, N. N., Anggraeni, D. S., & Enri, U. (2022). Pengelompokkan Data Kemiskinan Provinsi Jawa Barat Menggunakan Algoritma K-Means dengan Silhouette Coefficient. TEMATIK, 9(1), 29–35. https://doi.org/10.38204/tematik.v9i1.901
Gurunathan, V., Hamre, J., Klimov, D. K., & Jafri, M. S. (2021). Data mining of molecular simulations suggest key amino acid residues for aggregation, signaling and drug action. Biomolecules, 11(10), 1–14. https://doi.org/10.3390/biom11101541
Handoko, Churniawan, E., & Rozak, F. (2021). Analisis Respon Penumpang Terhadap Penerapan New Normal pada Layanan Kereta Api Jarak Jauh di Pulau Jawa. Jurnal Perkeretaapian Indonesia (Indonesian Railway Journal), 5(1), 36–46. https://doi.org/10.37367/jpi.v5i1.127
Haviluddin, H., Patandianan, S. J., Putra, G. M., Puspitasari, N., & Pakpahan, H. S. (2021). Implementasi Metode K-Means Untuk Pengelompokkan Rekomendasi Tugas Akhir. Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer, 16(1), 13-18. https://doi.org/10.30872/jim.v16i1.5182
Hidayati, R., Zubair, A., Pratama, A. H., & Indana, L. (2021). Analisis Silhouette Coefficientpada 6 Perhitungan Jarak K-Means Clustering Silhouette Coefficient Analysis in 6 Measuring Distancesof K-Means Clustering. Techno.COM, 20(2), 186–197. https://doi.org/10.33633/tc.v20i2.4556
La Murdani, A. I., & Nanlohy, Y. W. A. (2022). Implementasi Model Autoregressive Integrated Moving Average (Arima) Untuk Peramalan Jumlah Penumpang Kapal Laut Di Pelabuhan Ambon. VARIANCE: Journal of Statistics and Its Applications, 3(2), 81–90. https://doi.org/10.30598/variancevol3iss2page81-90
Mawarni, Q. I., & Budi, E. S. (2022). Implementasi Algoritma K-Means Clustering Dalam Penilaian Kedisiplinan Siswa. Jurnal Sistem Komputer Dan Informatika (JSON), 3(4), 522–528. https://doi.org/10.30865/json.v3i4.4242
Nugraha, H. S., Mutaqin, H., Fathah, A., & Juliane, C. (2023). Mengidentifikasi Strategi Promosi pada Jasa Penjualan Saldo Digital menggunakan Pendekatan Clustering. Edumatic: Jurnal Pendidikan Informatika, 7(1), 11–19. https://doi.org/10.29408/edumatic.v7i1.7385
Nugraha, N. B., Alimudin, E., & Bonifacius, V. I. (2022). Implementasi K-Means Clustering Pada Sistem Pakar Penentuan Jenis Sayuran. Journal of Innovation Information Technology and Application (JINITA), 4(2), 133–141. https://doi.org/10.35970/jinita.v4i2.1627
Paembonan, S., & Abduh, H. (2021). Penerapan Metode Silhouette Coefficient untuk Evaluasi Clustering Obat. PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, 6(2). https://doi.org/10.51557/pt_jiit.v6i2.659
Praseptian M, D., Fadlil, A., & Herman, H. (2022). Penerapan Clustering K-Means untuk Pengelompokan Tingkat Kepuasan Pengguna Lulusan Perguruan Tinggi. JURNAL MEDIA INFORMATIKA BUDIDARMA, 6(3), 1693–1700. https://doi.org/10.30865/mib.v6i3.4191
Priadi, A. A., Ari, B., Sugiarto, R., & Nurullah, P. (2022). Biaya Logistik Sektor Transportasi Laut Dan Pengaruhnya Terhadap PDB Nasional. Jurnal Transportasi Multimoda, 19(2), 25–34. https://doi.org/10.25104/mtm.v19i2.2042
Rahayu, S., Yumarlin, M. Z., Bororing, J. E., & Hadiyat, R. (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic: Jurnal Pendidikan Informatika, 6(1), 98–106. https://doi.org/10.29408/edumatic.v6i1.5433
Romadhona, W., Nugroho, B., & Alim Murtopo, A. (2022). Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K-Means. Jurnal Minfo Polgan, 11(2), 100–104. https://doi.org/10.33395/jmp.v11i2.11797
Salsabila, S. ‘Aina, Widiharih, T., & Sudarno, S. (2022). Metode K-Harmonic Means Clustering Dengan Validasi Silhouette Coefficient (Studi Kasus : Empat Faktor Utama Penyebab Stunting 34 Provinsi di Indonesia Tahun 2018). Jurnal Gaussian, 11(1). https://doi.org/10.14710/j.gauss.v11i1.34003
Setyaningtyas, S., Nugroho, B. I., & Arif, Z. (2022). Tinjauan Pustaka Sistematis: Penerapan Data Mining Teknik Clustering Algoritma K-Means. Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, 10(2), 52–61. https://doi.org/10.21063/jtif.2022.v10.2.52-61
Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727. https://doi.org/10.1109/ACCESS.2020.2988796
Supardi, R., & Kanedi, I. (2020). Implementasi Metode Algoritma K-Means Clustering pada Toko Eidelweis. Jurnal Teknologi Informasi, 4(2), 270–277. https://doi.org/10.36294/jurti.v4i2.1444
Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Penjualan Bisnis Ritel. Edumatic: Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081
Uska, M., Wirasasmita, R., Usuluddin, U., & Arianti, B. (2020). Evaluation of Rapidminer-Aplication in Data Mining Learning using PeRSIVA Model. Edumatic: Jurnal Pendidikan Informatika, 4(2), 164–171. https://doi.org/10.29408/edumatic.v4i2.2688
Wadanur, A., & Sari, A. A. (2022). Implementasi Algoritma Apriori dan FP-Growth pada Penjualan Spareparts. Edumatic: Jurnal Pendidikan Informatika, 6(1), 107–115. https://doi.org/10.29408/edumatic.v6i1.5470
Downloads
Published
Issue
Section
License
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.