Optimasi Gaussian Naïve Bayes dengan Hyperparameter Tuning dan Univariate Feature Selection dalam Prediksi Cuaca

Authors

  • Lindawati Lindawati Program Studi Teknik Telekomunikasi, Politeknik Negeri Sriwijaya
  • Mohammad Fadhli Program Studi Teknik Telekomunikasi, Politeknik Negeri Sriwijaya
  • Antoniy Sandi Wardana Program Studi Teknik Telekomunikasi, Politeknik Negeri Sriwijaya http://orcid.org/0009-0007-1331-0349

DOI:

https://doi.org/10.29408/edumatic.v7i2.21179

Keywords:

weather prediction, gaussian naïve bayes, univariate feature selection, hyperparameter tuning

Abstract

The importance of conducting weather prediction research is due to the significant influence of weather changes on daily life. The purpose of this study is to apply an optimal machine-learning classification method for weather prediction. The method used is the Gaussian Naïve Bayes model, which has been optimized using Univariate Feature Selection ANOVA-f test and Hyperparameter Tuning GridsearchCV techniques. The data used consists of 6454 daily weather data in Palembang City. There are 5 tests on the Gaussian Naïve Bayes model before and after optimization. The research results show that the optimization of the model successfully improves the performance in weather prediction. The highest accuracy result after optimization reaches 98.33% with 644 test data, an improvement from the pre-optimization accuracy of only 96.95%. Before optimization, the predictions for weather conditions such as sunny, cloudy/rainy, light rain, and heavy rain match the actual data. However, there were 20 prediction errors when dealing with data that should represent very heavy rain conditions. After optimization, the number of prediction errors for the very heavy rain data was reduced to seven. The optimization approach used in this research helps find the most suitable parameter combinations and eliminates irrelevant features, allowing the model to consider only significant features in weather p

References

Adlini, Anisya H.D, Sarah Y, Octavia C, & Sauda J.M. (2022). Metode Penelitian Kualitatif Studi Pustaka. Edumaspul: Jurnal Pendidikan, 6(1), 974–980. https://doi.org/10.33487/edumaspul.v6i1.3394

Aguni, L., Chabaa, S., Ibnyaich, S., & Zeroual, A. (2021). Predicting the notch band frequency of an ultra-wideband antenna using artificial neural networks. Telkomnika (Telecommunication Computing Electronics and Control), 19(1), 1–8. https://doi.org/10.12928/telkomnika.v19i1.15912

Alhakeem, Z. M., Jebur, Y. M., Henedy, S. N., Imran, H., Bernardo, L. F., & Hussein, H. M. (2022). Prediction of ecofriendly concrete compressive strength using gradient boosting regression tree combined with GridSearchCV hyperparameter-optimization techniques. Materials, 15(21), 7432. https://doi.org/10.3390/ma15217432

Ardiansyah, M., Sunyoto, A., & Luthfi, E. T. (2021). Analisis Perbandingan Akurasi Algoritma Naïve Bayes Dan C4. 5 untuk Klasifikasi Diabetes. Edumatic: Jurnal Pendidikan Informatika, 5(2), 147-156. https://doi.org/10.29408/edumatic.v5i2.3424

Armansyah, A., & Ramli, R. K. (2022). Model Prediksi Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 6(1), 1-10. https://doi.org/10.29408/edumatic.v6i1.4789

Harianto, H., Sunyoto, A., & Sudarmawan, S. (2020). Optimasi Algoritma Naïve Bayes Classifier untuk Mendeteksi Anomaly dengan Univariate Fitur Selection. Edumatic: Jurnal Pendidikan Informatika, 4(2), 40–49. https://doi.org/10.29408/edumatic.v4i2.2433

Harpale, V., & Bairagi, V. (2021). An adaptive method for feature selection and extraction for classification of epileptic EEG signal in significant states. Journal of King Saud University - Computer and Information Sciences, 33(6), 668–676. https://doi.org/10.1016/j.jksuci.2018.04.014

Hendrawan, I. R., Utami, E., & Hartanto, A. D. (2022). Comparison of Naïve Bayes Algorithm and XGBoost on Local Product Review Text Classification. Edumatic: Jurnal Pendidikan Informatika, 6(1), 143-149. https://doi.org/10.29408/edumatic.v6i1.5613

Intan, I., & Koswara, A. T. (2021). Analisis performansi prakiraan cuaca menggunakan algoritma machine learning. Jurnal_Pekommas, 6(2), 1-8.

Jebadurai, I. J., Paulraj, G. J. L., Jebadurai, J., & Silas, S. (2022). Experimental Analysis of Filtering-Based Feature Selection Techniques for Fetal Health Classification. Serbian Journal of Electrical Engineering, 19(2), 207–224. https://doi.org/10.2298/SJEE2202207J

Maisat, & Ashafidz F.D. (2023). Implementasi Optimasi Hyperparameter GridSearchCV Pada Sistem Prediksi Serangan Jantung Menggunakan SVM. Online) Teknologi: Jurnal Ilmiah Sistem Informasi, 13(1), 8–15.

Muhamad, H., Prasojo, C. A., Sugianto, N. A., Surtiningsih, L., & Cholissodin, I. (2017). Optimasi Naïve Bayes Classifier Dengan Menggunakan Particle Swarm Optimization Pada Data Iris. 4(3), 180–184. https://doi.org/10.25126/jtiik.201743251

Oshodi. (2022). Machine Learning-based Algorithms for Weather Forecasting. Preprints, 1(1), 1–6. https://doi.org/10.20944/preprints202206.0428.v

Rangkuti, M. Y. R., Alfansyuri, M. V., & Gunawan, W. (2021). Penerapan Algoritma K-Nearest Neighbor (Knn) Dalam Memprediksi Dan Menghitung Tingkat Akurasi Data Cuaca Di Indonesia. Hexagon, 2(2), 11-16. https://doi.org/10.36761/hexagon.v2i2.1082

Sari, V., Firdausi, F., & Azhar, Y. (2020). Perbandingan Prediksi Kualitas Kopi Arabika dengan Menggunakan Algoritma SGD, Random Forest dan Naive Bayes. Edumatic: Jurnal Pendidikan Informatika, 4(2), 1–9. https://doi.org/10.29408/edumatic.v4i2.2202

Sihombing, L. O., Hannie, H., & Dermawan, B. A. (2021). Sentimen Analisis Customer Review Produk Shopee Indonesia Menggunakan Algortima Naïve Bayes Classifier. Edumatic: Jurnal Pendidikan Informatika, 5(2), 233-242. https://doi.org/10.29408/edumatic.v5i2.4089

Siregar, A. M., Faisal, S., Cahyana, Y., & Priyatna, B. (2020). Perbandingan Algoritme Klasifikasi Untuk Prediksi Cuaca. Jurnal Accounting Information System (AIMS), 3(1), 15-24. https://doi.org/10.32627/aims.v3i1.280

Siregar. (2020). Klasifikasi Untuk Prediksi Cuaca Menggunakan Esemble Learning. PETIR, 13(2), 138–147. https://doi.org/10.33322/petir.v13i2.998

Sudrajat, A., Mulyani, N., & Marpaung, N. (2022). Sistem Pendukung Keputusan Penentuan Kelayakan Penangguhan Kredit Nasabah menggunakan Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 6(2), 205-214. https://doi.org/10.29408/edumatic.v6i2.6298

Sunarmi, N., Kumailia, E. N., Nurfaiza, N., Nikmah, A. K., Aisyah, H. N., Sriwahyuni, I., & Lailly, S. N. (2022). Analisis Faktor Unsur Cuaca terhadap Perubahan Iklim Di Kabupaten Pasuruan pada Tahun 2021 dengan Metode Principal Component Analysis. Newton-Maxwell Journal of Physics, 3(2), 56–64. https://doi.org/10.33369/nmj.v3i2.23380

Susanti, S., Sari, A. A., Anam, M. K., Jamaris, M., & Hamdani, H. (2022). Sistem Prediksi Keuntungan Influencer Pengguna E-Commerce Shopee Affiliates menggunakan Metode Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 6(2), 394–403. https://doi.org/10.29408/edumatic.v6i2.6787

Utami, Rini, D. P., & & Lestari, E. (2021). Prediksi Cuaca di Kota Palembang Berbasis Supervised Learning Menggunakan Algoritma K-Nearest Neighbour. JUPITER: Jurnal Penelitian Ilmu Dan Teknologi Komputer, 13(1), 09–18.

Widyassari, A. P., & Suryani, P. E. (2021). Komparasi Metode Naïve Bayes dan SAW untuk Pemilihan Penerimaan Insentif Karyawan. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 3(02), 149–159. https://doi.org/10.46772/intech.v3i02.555

Yani, Aradea, & Husni. (2022). Optimizing Weather Forecast Using Ensemble Method on Naïve Bayes and C4.5. JuTISI, 8(3), 607–619. https://doi.org/10.28932/jutisi.v8i3.5455

Downloads

Published

2023-12-19