Perbandingan Algoritma Multilinear Regression dan Decision Tree Regressor dalam Memprediksi Efisiensi Penghambatan Korosi Piridazin
DOI:
https://doi.org/10.29408/edumatic.v7i2.22127Keywords:
corrosion, pyridazine, ml, mlr, dtrAbstract
Corrosion is one of the main problems in various industries, causing increased production costs, maintenance expenses, and decreased equipment efficiency. Inhibitors, especially organic compounds, have become an increasingly sought-after solution to reduce corrosion in an effective and environmentally friendly manner. This research aims to compare linear algorithms based on multilinear regression (MLR) and nonlinear algorithms based on decision tree regressor (DTR) for a case study of predicting corrosion inhibition efficiency (CIE) values of pyridazine derivative compounds as corrosion inhibitors. This research is a data-based theoretical study using a machine learning (ML) approach. In this study, we used a dataset of pyridazine compounds from published literature consisting of 20 pyridazine compounds with molecular properties as features (independent variables) and CIE values as targets (dependent variables). The analysis consists of analyzing the prediction model's performance and important features that support model performance. The research results show that the DTR-based nonlinear model has better performance than the MLR-based linear model based on evaluation metrics and prediction data distribution plots. We also find that the molecular properties fraction of electron transferred (∆N) and electron affinity (A) respectively emerge as the features most responsible for the prediction performance of the DTR model. We conclude that the DTR-based nonlinear algorithm can be used as an accurate and reliable predictive model to predict the corrosion inhibition ability for potential new pyridazine derivative compounds.
References
Akrom, M. (2022). Investigation of natural extracts as green corrosion inhibitors in steel using density functional theory. Jurnal Teori dan Aplikasi Fisika, 10(1), 89-102. https://doi.org/10.23960/jtaf.v10i1.2927
Akrom, M., Rustad, S., Saputro, A. G., & Dipojono, H. K. (2023). Data-driven investigation to model the corrosion inhibition efficiency of pyrimidine-pyrazole hybrid corrosion inhibitors. Computational and Theoretical Chemistry, 1229, 114307. https://doi.org/10.1016/j.comptc.2023.114307
Akrom, M., Rustad, S., Saputro, A. G., Ramelan, A., Fathurrahman, F., & Dipojono, H. K. (2023). A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds. Materials Today Communications, 35, 106402. https://doi.org/10.1016/j.mtcomm.2023.106402
Akrom, M., & Sutojo, T. (2023). Investigation of QSPR-Based Machine Learning Models in Pyrimidine Corrosion Inhibitors. Eksergi, 20(2), 107-111. https://doi.org/10.31315/e.v20i2.9864
Budi, S., Akrom, M., Trisnapradika, G. A., Sutojo, T., Aji, W., & Prabowo, E. (2023). Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets. Scientific Journal of Informatics, 10(2), 151–158. https://doi.org/10.15294/sji.v10i2.43929
Douche, D., Elmsellem, H., Anouar, E. H., Guo, L., Hafez, B., Tüzün, B., El Louzi, A., Bougrin, K., Karrouchi, K., & Himmi, B. (2020). Anti-corrosion performance of 8-hydroxyquinoline derivatives for mild steel in acidic medium: Gravimetric, electrochemical, DFT and molecular dynamics simulation investigations. Journal of Molecular Liquids, 308, 113042. https://doi.org/10.1016/j.molliq.2020.113042
El Assiri, E. H., Driouch, M., Lazrak, J., Bensouda, Z., Elhaloui, A., Sfaira, M., Saffaj, T., & Taleb, M. (2020). Development and validation of QSPR models for corrosion inhibition of carbon steel by some pyridazine derivatives in acidic medium. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05067
El Hajjaji, F., Salim, R., Messali, M., Hammouti, B., Chauhan, D. S., Almutairi, S. M., & Quraishi, M. A. (2019). Electrochemical studies on new pyridazinium derivatives as corrosion inhibitors of carbon steel in acidic medium. Journal of Bio-and Tribo-Corrosion, 5, 1-13.
Elmachtoub, A. N., Liang, J. C. N., & McNellis, R. (2020). Decision trees for decision-making under the predict-then-optimize framework. In International Conference on Machine Learning (pp. 2858-2867). PMLR.
Fayomi, O. S., Akande, I. G., & Odigie, S. (2019). Economic impact of corrosion in oil sectors and prevention: An overview. Journal of Physics: Conference Series, 1378(2), 022037. https://doi.org/10.1088/1742-6596/1378/2/022037
Ghazoui, A., Bencaht, N., Al-Deyab, S., Zarrouk, A., Hammouti, B., Ramdani, M., & Guenbour, M. (2013). An investigation of two novel Pyridazine derivatives as corrosion inhibitor for C38 steel in 1.0 M HCl. International Journal of Electrochemical Science, 8(2), 2272-2292. https://doi.org/10.1016/s1452-3981(23)14308-2
Hameed, R. S. A., Aljuhani, E. H., Al-Bagawi, A. H., Shamroukh, A. H., & Abdallah, M. (2020). Study of sulfanyl pyridazine derivatives as efficient corrosion inhibitors for carbon steel in 1.0 m hcl using analytical techniques. International Journal of Corrosion and Scale Inhibition, 9(2), 623–643. https://doi.org/10.17675/2305-6894-2020-9-2-16
Hossain, N., Asaduzzaman Chowdhury, M., & Kchaou, M. (2021). An overview of green corrosion inhibitors for sustainable and environment friendly industrial development. Journal of Adhesion Science and Technology, 35(7), 673–690. https://doi.org/10.1080/01694243.2020.1816793
Juanda, M., Pratiwi, N. L., Astuti, D. H., & Sani, S. (2022). Kajian Inhibitor Nano2 sebagai Pengendalian Laju Korosi pada Stainless Steel dalam Lingkungan Nacl 3, 5%. Jurnal Teknik Kimia, 16(2), 80-86. https://doi.org/10.33005/jurnal_tekkim.v16i2.3049
Li, X., Khademi, F., Liu, Y., Akbari, M., Wang, C., Bond, P. L., Keller, J., & Jiang, G. (2019). Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion. Journal of Environmental Management, 234, 431–439. https://doi.org/10.1016/j.jenvman.2018.12.098
Luo, W., Lin, Q., Ran, X., Li, W., Tan, B., Fu, A., & Zhang, S. (2021). A new pyridazine derivative synthesized as an efficient corrosion inhibitor for copper in sulfuric acid medium: Experimental and theoretical calculation studies. Journal of Molecular Liquids, 341, 117370. https://doi.org/10.1016/j.molliq.2021.117370
Lv, Y. J., Wang, J. W., Wang, J., Xiong, C., Zou, L., Li, L., & Li, D. W. (2020). Steel corrosion prediction based on support vector machines. Chaos, Solitons & Fractals, 136, 109807.
Mythreyi, O. V., Srinivaas, M. R., Amit Kumar, T., & Jayaganthan, R. (2021). Machine-learning-based prediction of corrosion behavior in additively manufactured Inconel 718. Data, 6(8), 80.
Obaseki, M., & Elijah, P. T. (2021). Application of Artificial Neural Network Model to Predict Corrosion Rates on Pipeline. Journal of Newviews in Engineering and Technology (JNET), 3(2), 65–75.
Obot, I. B., & Umoren, S. A. (2020). Experimental, DFT and QSAR models for the discovery of new pyrazines corrosion inhibitors for steel in oilfield acidizing environment. International Journal of Electrochemical Science, 15(9), 9066–9080. https://doi.org/10.20964/2020.09.72
Quadri, T. W., Olasunkanmi, L. O., Akpan, E. D., Fayemi, O. E., Lee, H. S., Lgaz, H., ... & Ebenso, E. E. (2022). Development of QSAR-based (MLR/ANN) predictive models for effective design of pyridazine corrosion inhibitors. Materials Today Communications, 30, 103163. https://doi.org/10.1016/j.mtcomm.2022.103163
Ser, C. T., Žuvela, P., & Wong, M. W. (2020). Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships. Applied Surface Science, 512, 145612. https://doi.org/10.1016/j.apsusc.2020.145612
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524. https://doi.org/10.1016/j.asoc.2019.105524
Sutojo, T., Rustad, S., Akrom, M., Syukur, A., Shidik, G. F., & Dipojono, H. K. (2023). A machine learning approach for corrosion small datasets. Npj Materials Degradation, 7(1), 1-10. https://doi.org/10.1038/s41529-023-00336-7
Thanush, A. A., Chitra, P., Kasinath, J., & Surya Prakash, R. (2022). Atmospheric corrosion rate prediction of low-alloy steel using machine learning models. IOP Conference Series: Materials Science and Engineering, 1248(1), 012050. https://doi.org/10.1088/1757-899x/1248/1/012050
Verma, D. K. (2018). Density Functional Theory (DFT) as a Powerful Tool for Designing Corrosion Inhibitors in Aqueous Phase. Advanced Engineering Testing. https://doi.org/10.5772/intechopen.78333
Downloads
Published
Issue
Section
License
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.