Analisis Sentimen Review ChatGPT di Play Store menggunakan Support Vector Machine dan K-Nearest Neighbor

Authors

  • Adji Surya Pamungkas Program Studi Informatika, Universitas Amikom Yogyakarta
  • Nuri Cahyono Program Studi Informatika, Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.29408/edumatic.v8i1.24114

Keywords:

chatgpt, sentiment, cross validation, svm, knn

Abstract

The ChatGPT application for Android was launched on July 25, 2023, and the language model from OpenAI achieved a rating of 4.8 until early 2024. Despite the majority of positive reviews, user reports stating that ChatGPT provides inaccurate answers raise concerns about the reliability of this application. This research aims to compare the models of the Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) algorithms in analyzing the sentiment of ChatGPT application reviews. Utilizing text mining methods to extract information from text, data was collected from Google Play Store reviews using data scraping techniques and analyzed with Support Vector Machine and K-Nearest Neighbor algorithms. Cross-validation with 5 folds and data split using 80% training and 20% testing data were applied to evaluate the performance of both algorithms. The sentiment classification results showed that the Support Vector Machine algorithm achieved an average accuracy of 80%, while K-Nearest Neighbor reached 71%. SVM excels due to its ability to overcome KNN's limitations regarding less relevant features that do not significantly contribute to predictions. The findings of this study are expected to help developers understand and respond to user feedback regarding the reliability of ChatGPT.

References

Alaei, A. R., Becken, S., & Stantic, B. (2017). Sentiment analysis in tourism: Capitalizing on big data. Journal of Travel Research, 58(2), 175–191. https://doi.org/10.1177/0047287517747753

Amrullah, A. Z., Anas, A. S., & Hidayat, M. A. J. (2020). Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square. Jurnal BITe, 2(1), 40–44. https://doi.org/10.30812/bite.v2i1.804

Atmajaya, D., Febrianti, A., & Darwis, H. (2023). Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter. Indonesian Journal of Computer Science, 12(4). https://doi.org/10.33022/ijcs.v12i4.3341

Dowling, M., & Lucey, B. (2023). ChatGPT for (Finance) research: The Bananarama Conjecture. Finance Research Letters, 53, 103662. https://doi.org/10.1016/j.frl.2023.103662

Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). Analisis Sentimen Aplikasi Ruang Guru di Twitter Menggunakan Algoritma Klasifikasi. Jurnal Teknoinfo, 14(2), 115. https://doi.org/10.33365/jti.v14i2.679

Gravel, J., D’Amours-Gravel, M., & Osmanlliu, E. (2023). Learning to fake it: Limited responses and fabricated references provided by ChatGPT for medical questions. Mayo Clinic Proceedings: Digital Health, 1(3), 226–234. https://doi.org/10.1016/j.mcpdig.2023.05.004

Handayani, A. S., Soim, S., Agusdi, T. E., Rumiasih, & Nurdin, A., (2020). Klasifikasi Kualitas Udara Dengan Metode Support Vector Machine. Jurnal Informatika & Rekayasa Elektronika, 3(2), pp. 187-199.

Hassani, H., & Silva, E. S. (2023). The role of ChatGPT in data science: how ai-assisted conversational interfaces are revolutionizing the field. Big data and cognitive computing, 7(2), 62. https://doi.org/10.3390/bdcc7020062

Hidayatullah, H., Purwantoro, P., & Umaidah, Y. (2023). Penerapan Naive Bayes Dengan Oprimasi Information Gain Dan SMOTE Untuk Analisis Sentimen Pengguna Aplikasi ChatGPT. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1546–1553. https://doi.org/10.36040/jati.v7i3.6887

Krotov, V., Johnson, L., & Silva, L. (2020). Legality and ethics of web scraping. Communications of the Association for Information Systems, 47, 539–563. https://doi.org/10.17705/1cais.04724

Leippold, M. (2023). Thus spoke GPT-3: Interviewing a large-language model on climate finance. Finance Research Letters, 53(May 2023), 103617. https://doi.org/10.1016/j.frl.2022.103617

Lestari, S., Mupaat, M., & Erfina, A. (2022). Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter. JUSIFO (Jurnal Sistem Informasi), 8(1), 13–22. https://doi.org/10.19109/jusifo.v8i1.12116

Lailiyah, M., Sumpeno, S., & Purnama, I. K. E. (2017, August). Sentiment analysis of public complaints using lexical resources between Indonesian sentiment lexicon and Sentiwordnet. 2017 International Seminar on Intelligent Technology and Its Applications (ISITIA). http://dx.doi.org/10.1109/isitia.2017.8124100

Liu, B., (2012). Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers.

Prasetyo, E. (2013). Data Mining : Konsep Dan Aplikasi Menggunakan Matlab. Yogyakarta: CV Andi Offset.

Rahayu, S., Mz, Y., Bororing, J. E., & Hadiyat, R. (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic: Jurnal Pendidikan Informatika, 6(1), 98–106. https://doi.org/10.29408/edumatic.v6i1.5433

Rifaldi, M., Ramadhan, Y., & Jaelani, I. (2023). Analisis Sentimen Terhadap Aplikasi Chatgpt Pada Twitter Menggunakan Algoritma Naïve Bayes. J-SAKTI (Jurnal Sains Komputer dan Informatika), 7(2), 802-814. doi:http://dx.doi.org/10.30645/j-sakti.v7i2.687

Rofiqi, M. A., Fauzan, Abd. C., Agustin, A. P., & Saputra, A. A. (2019). Implementasi term-frequency inverse document frequency (TF-IDF) untuk mencari relevansi dokumen berdasarkan query. ILKOMNIKA: Journal of Computer Science and Applied Informatics, 1(2), 58–64. https://doi.org/10.28926/ilkomnika.v1i2.18

Ruslim, K. I., Adikara, P. P., & Indriati, I. (2019). Analisis Sentimen Pada Ulasan Aplikasi Mobile Banking Menggunakan Metode Support Vector Machine dan Lexicon Based Features. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(7), 6694–6702. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5792

Sepri, D. (2020). Penerapan Algoritma Naïve Bayes Untuk Analisis Kepuasan Penggunaan Aplikasi Bank. Journal of Computer System and Informatics (JoSYC), 2(1), 135-139.

Shen, X., Chen, Z., Backes, M., & Zhang, Y. (2023). In chatgpt we trust? Measuring and characterizing the reliability of chatgpt. arXiv.Org. https://arxiv.org/abs/2304.08979

Santoso, V. I., Virginia, G., & Lukito, Y. (2017). Penerapan Sentiment Analysis Pada Hasil Evaluasi Dosen Dengan Metode Support Vector Machine. Jurnal Transformatika, 14(2), 72–76. https://doi.org/10.26623/transformatika.v14i2.439

Yusuf, L., & Masripah, S. (2023). Sentimen Analisis ChatGPT Dengan Algoritma Naive Bayes Dan Optimasi PSO. INTI Nusa Mandiri, 18(1), 59–64. https://doi.org/10.33480/inti.v18i1.4230

Downloads

Published

2024-06-20

How to Cite

Pamungkas, A. S., & Cahyono, N. (2024). Analisis Sentimen Review ChatGPT di Play Store menggunakan Support Vector Machine dan K-Nearest Neighbor. Edumatic: Jurnal Pendidikan Informatika, 8(1), 1–10. https://doi.org/10.29408/edumatic.v8i1.24114