Analisis Sentimen Ulasan Aplikasi PosPay untuk Meningkatkan Kepuasan Pengguna dengan Metode K-Nearest Neighbor (KNN)

Authors

  • Kiki Mustaqim Program Studi Sains Data, Universitas Logistik dan Bisnis Internasional
  • Fatia Amalia Amaresti Program Studi Sains Data, Universitas Logistik dan Bisnis Internasional
  • Intan Novita Dewi Program Studi Manajemen Rekayasa, Universitas Logistik dan Bisnis Internasional

DOI:

https://doi.org/10.29408/edumatic.v8i1.24779

Keywords:

comment, k-nearest neighbor, pospay, sentiment analysis

Abstract

PT Pos Indonesia has launched a digital pospay service. Users who have a positive experience are more likely to return to application. User perceptions analysis can be known from the Review sentiments. Review sentiments that are classified as positive and negative are really needed by developers to improve services (user satisfaction). The research aims to increase user satisfaction of the PosPay application based on the application's review data. The source of data is a review of the pospay application at Google play store. The method used quantitative study method that is K-Nearest Neighbor (K-NN) that classify objects based on learning data that are closest to the object. Research variable is the word from user commentary that associated with the pospay application services. Application review data in scrapping, preprocessing, splits data (train data and test data). Supervised learning (TF-IDF and K-NN) prepared with python programming provides data visualizing. The research results show that the sentiment of Pospay application users tends to be positive. K-NN classification model produces 91% accuracy, 90% precision and recall by 99%. The key word of positive sentiment is: easy, helpful, transaction. Keyword negative sentiment: balance, pay, login.

References

Andini, V. A., & Himawan, A. F. I. (2023). Pengaruh Perceived Ease Of Use, Perceived Security, Perceived Risk dan Trust Terhadap Minat Penggunaan Aplikasi Pospay. SEIKO : Journal of Management & Business, 6(1), 48–61.

Dewi, R. S., & Zahroh, D. (2014). Analisis Sistem dan Prosedur Pembayaran Pdam Melalui Pospay Guna Mendukung Pengendalian Intern (Studi Pada Kantor Pos Pusat Kabupaten Nganjuk). Jurnal Administrasi Bisnis (JAB), 15(1), 1–8.

Isa, Y. (2015). Pengembangan Model Blended Learning Mata Kuliah Perencanaan Teknologi Pembelajaran Teknologi Informasi dan Komunikasi. Jurnal Teknologi Pendidikan, 17(2), 73–83.

Krisbiantoro, D., Sarmini, & Kharisma, C. (2023). Mengetahui Tingkat Kegunaan Pengguna Pada Aplikasi Pospay Dengan Metode Heuristik (Studi Kasus: Kantor Pos Purbalingga). Cogito Smart Journal, 9(1), 109–119. https://doi.org/10.31154/cogito.v9i1.460.109-119

Muhidin, D., & Wibowo, A. (2020). Perbandingan kinerja algoritma Support Vector Machine dan K-Nearest Neighbor terhadap analisis sentimen kebijakan new normal. STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 5(2), 153-159. https://doi.org/10.30998/string.v5i2.6715

Nasution, M. R. A., & Hayaty, M. (2019). Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter. JURNAL INFORMATIKA, 6(2), 212–218. https://doi.org/10.31311/ji.v6i2.5129

Nuramaliah, F., Nur, Y., & Ngandoh, A. M. (2023). Pengaruh Kualitas Sistem Aplikasi dan Kualitas Layanan Terhadap Kepuasan Konsumen Pada Pemanfaatan Pospay PT Pos Indonesia Makassar. manuver : Jurnal Akuntasi Dan Manajemen, 1(1), 166–174.

Putrawangsa, S., & Hasanah, U. (2018). Integrasi teknologi digital dalam pembelajaran di era industri 4.0: Kajian dari perspektif pembelajaran matematika. Jurnal Tatsqif : Jurnal Pemikiran Dan Penelitian Pendidikan, 16(1), 42–54. https://doi.org/10.20414/jtq.v16i1.203

Putri, D. S., & Ridwan, T. (2023). Analisis Sentimen Ulasan Aplikasi Pospay dengan Algoritma Support Vector Machine. Jurnal Ilmiah Informatika (JIF), 11(1), 32–40. https://doi.org/10.33884/jif.v11i01.6611

Rahayu, S., MZ, Y., Bororing, J. E., & Hidayat, R. (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic: Jurnal Pendidikan Informatika, 6(1), 98–106. https://doi.org/10.29408/edumatic.v6i1.5433

Ramadani, N. C., & Waluyo, R. (2022). Analisis Kepuasan Pengguna Aplikasi Pospay dari Aspek Usability Menggunakan Metode Heuristic Evaluation. Jutisi : Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, 11(3), 679–686. https://doi.org/10.35889/jutisi.v11i2.870

Salsabilla, T. A. (2022). Kualitas layanan aplikasi Pospay dari PT. Pos Indonesia (Persero) untuk pelanggan Kota Bandung. Nautical : Jurnal Ilmiah Multidisiplin, 1(7), 622–633. https://doi.org/10.55904/nautical.v1i7.428

Senthikumar, M. (2019). Rule Based Morphological Variation Removable Stemming Algorithm. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 1809–1814. https://doi.org/10.35940/ijrte.C6200.118419

Septian, J. A., Fahrudin, T. M., & Nugroho, A. (2019). Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor. JOURNAL OF INTELLIGENT SYSTEMS AND COMPUTATION, 43–49. https://doi.org/10.52985/insyst.v1i1.36

Shintia, N., & Mantala, R. (2019). Analisis Kelayakan Proyek Sistem Informasi Persediaan. Positif: Jurnal Sistem Dan Teknologi Informasi, 5(2), 89–96. https://doi.org/10.31961/positif.v5i2.822

Sihombing, M. S. L., & Oktaviani, N. (2022). Penerapan Model UTAUT 2 Terhadap Kepuasan Dan Perilaku Pengguna Aplikasi Pospay Di Kota Palembang. Jurnal Mantik, 6(3), 3283–3289.

Sugianto, C. A., & Apandi, T. H. (2017). Pengaruh Tokenisasi Kata N-Grams Spam SMS Menggunakan Support Vector Machine. CITISEE 2017 , 5–9. https://doi.org/10.31227/osf.io/vjc7k

Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Penjualan Bisnis Ritel. Edumatic: Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081

Vinodhini, G., & Chandrasekaran, RM. (2012). Sentiment Analysis and Opinion Mining: A Survey. International Journal of Advanced Research in Computer Science and Software Engineering, 2(6), 282–292.

Yuningsih, L. (2018). Pembuatan Aplikasi Pengisian Kuesioner Customer Pada Kantor Pos Denpasar. Proceeding Seminar Nasional Sistem Informasi dan Teknologi Informasi, 1(2), 313-318.

Downloads

Published

2024-06-20