Analisis Sentimen Ulasan Aplikasi PosPay untuk Meningkatkan Kepuasan Pengguna dengan Metode K-Nearest Neighbor (KNN)
DOI:
https://doi.org/10.29408/edumatic.v8i1.24779Keywords:
comment, k-nearest neighbor, pospay, sentiment analysisAbstract
PT Pos Indonesia has launched a digital pospay service. Users who have a positive experience are more likely to return to application. User perceptions analysis can be known from the Review sentiments. Review sentiments that are classified as positive and negative are really needed by developers to improve services (user satisfaction). The research aims to increase user satisfaction of the PosPay application based on the application's review data. The source of data is a review of the pospay application at Google play store. The method used quantitative study method that is K-Nearest Neighbor (K-NN) that classify objects based on learning data that are closest to the object. Research variable is the word from user commentary that associated with the pospay application services. Application review data in scrapping, preprocessing, splits data (train data and test data). Supervised learning (TF-IDF and K-NN) prepared with python programming provides data visualizing. The research results show that the sentiment of Pospay application users tends to be positive. K-NN classification model produces 91% accuracy, 90% precision and recall by 99%. The key word of positive sentiment is: easy, helpful, transaction. Keyword negative sentiment: balance, pay, login.
References
Andini, V. A., & Himawan, A. F. I. (2023). Pengaruh Perceived Ease Of Use, Perceived Security, Perceived Risk dan Trust Terhadap Minat Penggunaan Aplikasi Pospay. SEIKO : Journal of Management & Business, 6(1), 48–61.
Dewi, R. S., & Zahroh, D. (2014). Analisis Sistem dan Prosedur Pembayaran Pdam Melalui Pospay Guna Mendukung Pengendalian Intern (Studi Pada Kantor Pos Pusat Kabupaten Nganjuk). Jurnal Administrasi Bisnis (JAB), 15(1), 1–8.
Isa, Y. (2015). Pengembangan Model Blended Learning Mata Kuliah Perencanaan Teknologi Pembelajaran Teknologi Informasi dan Komunikasi. Jurnal Teknologi Pendidikan, 17(2), 73–83.
Krisbiantoro, D., Sarmini, & Kharisma, C. (2023). Mengetahui Tingkat Kegunaan Pengguna Pada Aplikasi Pospay Dengan Metode Heuristik (Studi Kasus: Kantor Pos Purbalingga). Cogito Smart Journal, 9(1), 109–119. https://doi.org/10.31154/cogito.v9i1.460.109-119
Muhidin, D., & Wibowo, A. (2020). Perbandingan kinerja algoritma Support Vector Machine dan K-Nearest Neighbor terhadap analisis sentimen kebijakan new normal. STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 5(2), 153-159. https://doi.org/10.30998/string.v5i2.6715
Nasution, M. R. A., & Hayaty, M. (2019). Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter. JURNAL INFORMATIKA, 6(2), 212–218. https://doi.org/10.31311/ji.v6i2.5129
Nuramaliah, F., Nur, Y., & Ngandoh, A. M. (2023). Pengaruh Kualitas Sistem Aplikasi dan Kualitas Layanan Terhadap Kepuasan Konsumen Pada Pemanfaatan Pospay PT Pos Indonesia Makassar. manuver : Jurnal Akuntasi Dan Manajemen, 1(1), 166–174.
Putrawangsa, S., & Hasanah, U. (2018). Integrasi teknologi digital dalam pembelajaran di era industri 4.0: Kajian dari perspektif pembelajaran matematika. Jurnal Tatsqif : Jurnal Pemikiran Dan Penelitian Pendidikan, 16(1), 42–54. https://doi.org/10.20414/jtq.v16i1.203
Putri, D. S., & Ridwan, T. (2023). Analisis Sentimen Ulasan Aplikasi Pospay dengan Algoritma Support Vector Machine. Jurnal Ilmiah Informatika (JIF), 11(1), 32–40. https://doi.org/10.33884/jif.v11i01.6611
Rahayu, S., MZ, Y., Bororing, J. E., & Hidayat, R. (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic: Jurnal Pendidikan Informatika, 6(1), 98–106. https://doi.org/10.29408/edumatic.v6i1.5433
Ramadani, N. C., & Waluyo, R. (2022). Analisis Kepuasan Pengguna Aplikasi Pospay dari Aspek Usability Menggunakan Metode Heuristic Evaluation. Jutisi : Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, 11(3), 679–686. https://doi.org/10.35889/jutisi.v11i2.870
Salsabilla, T. A. (2022). Kualitas layanan aplikasi Pospay dari PT. Pos Indonesia (Persero) untuk pelanggan Kota Bandung. Nautical : Jurnal Ilmiah Multidisiplin, 1(7), 622–633. https://doi.org/10.55904/nautical.v1i7.428
Senthikumar, M. (2019). Rule Based Morphological Variation Removable Stemming Algorithm. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 1809–1814. https://doi.org/10.35940/ijrte.C6200.118419
Septian, J. A., Fahrudin, T. M., & Nugroho, A. (2019). Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor. JOURNAL OF INTELLIGENT SYSTEMS AND COMPUTATION, 43–49. https://doi.org/10.52985/insyst.v1i1.36
Shintia, N., & Mantala, R. (2019). Analisis Kelayakan Proyek Sistem Informasi Persediaan. Positif: Jurnal Sistem Dan Teknologi Informasi, 5(2), 89–96. https://doi.org/10.31961/positif.v5i2.822
Sihombing, M. S. L., & Oktaviani, N. (2022). Penerapan Model UTAUT 2 Terhadap Kepuasan Dan Perilaku Pengguna Aplikasi Pospay Di Kota Palembang. Jurnal Mantik, 6(3), 3283–3289.
Sugianto, C. A., & Apandi, T. H. (2017). Pengaruh Tokenisasi Kata N-Grams Spam SMS Menggunakan Support Vector Machine. CITISEE 2017 , 5–9. https://doi.org/10.31227/osf.io/vjc7k
Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Penjualan Bisnis Ritel. Edumatic: Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081
Vinodhini, G., & Chandrasekaran, RM. (2012). Sentiment Analysis and Opinion Mining: A Survey. International Journal of Advanced Research in Computer Science and Software Engineering, 2(6), 282–292.
Yuningsih, L. (2018). Pembuatan Aplikasi Pengisian Kuesioner Customer Pada Kantor Pos Denpasar. Proceeding Seminar Nasional Sistem Informasi dan Teknologi Informasi, 1(2), 313-318.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Kiki Mustaqim, Fatia Amalia Amaresti, Intan Novita Dewi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.