Sistem Presensi Pendeteksi Wajah menggunakan Metode Modified Region Convolutional Neural Network dan PCA

Authors

  • Renaldi Valentino Talumepa Program Studi Ilmu Komputer, Universitas Budi Luhur, Indonesia
  • Donny Anggara Putra Program Studi Ilmu Komputer, Universitas Budi Luhur, Indonesia
  • Hari Soetanto Program Studi Ilmu Komputer, Universitas Budi Luhur, Indonesia

DOI:

https://doi.org/10.29408/edumatic.v8i1.25207

Keywords:

attendance, artificial intelligence, face recognition, mr-cnn, pca

Abstract

Attendance is an activity to collect data to find out the number of attendances at an event or activity. In order to increase effectiveness and time efficiency is important, it is necessary to have an artificial intelligence-based presence by means of face detection. This study aims to create a face detection attendance system using modified region convolutional neural network (MR-CNN) and principal component analysis (PCA) methods. This type of research is development research by applying the concept of digital image based on face recognition. This research applies a method in deep learning, namely MR-CNN through camera media to take images and the extraction process using the PCA method to reduce image resolution. Images that include various individuals who want to be recognized are stored and then used as datasets. From the dataset, the MR-CNN model was trained with training data. Our findings are in the form of a web-based facial short-attendance system. Where are the calculation results in this system has an accuracy value of 96.1%, so it can be used well for facial identification, and can be used at SMK Bhakti Anindya.

References

Affandi, L., & Rizaldi, A. (2020). Sistem Presensi menggunakan NFC Smartphone Android dan Raspberry Pi (Studi Kasus Politeknik Negeri Malang). Jurnal Informatika Polinema, 6(3), 75–82. https://doi.org/10.33795/jip.v6i3.299

Akbar, A. L., Fatichah, C., & Saikhu, A. (2020). Pengenalan Wajah Menggunakan Metode Deep Neural Networks Dengan Perpaduan Metode Discrete Wavelet Transform, Stationary Wavelet Transform, Dan Discrete Cosine Transform. JUTI J. Ilm. Teknol. Inf, 18(2), 158–170. https://doi.org/10.12962/j24068535.v18i2.a1000

Akram, A., Rashid, J., Jaffar, M. A., Faheem, M., & Amin, R. ul. (2023). Segmentation and classification of skin lesions using hybrid deep learning method in the Internet of Medical Things. Skin Research and Technology, 29(11), e13524. https://doi.org/10.1111/srt.13524

Astuti, D. L. Z., Samsuryadi, S., & Rini, D. P. (2019). Real-time classification of facial expressions using a principal component analysis and convolutional neural network. Sinergi, 23(3), 239–244. https://doi.org/10.22441/sinergi.2019.3.008

Hardjianto, M. (2024). Pengenalan Wajah Secara Realtime Menggunakan Adaboost Viola-Jones dan 2D DWT-PCA dengan Struktur Index KNN-KD Tree. Decode: Jurnal Pendidikan Teknologi Informasi, 4(1), 154–166.

Hermawan, E. (2021). Klasifikasi Pengenalan Wajah Menggunakan Masker atau Tidak Dengan Mengimplementasikan Metode CNN (Convolutional Neural Network). Jurnal Industri Kreatif Dan Informatika Series (JIKIS), 1(1), 33–43.

Hidayah, M., Irfansyah, A. N. I., & Purwanto, D. (2022). Deteksi Objek Pada Mobil Otonom dengan Kamera Termal Infra Merah. Jurnal Teknik ITS, 11(3), A204–A209. https://doi.org/10.12962/j23373539.v11i3.94793

Indra, D., Herman, H., & Budi, F. S. (2023). Implementasi Sistem Penghitung Kendaraan Otomatis Berbasis Computer Vision. Komputika: Jurnal Sistem Komputer, 12(1), 53–62. https://doi.org/10.34010/komputika.v12i1.9082

Liana, D. A., Kristianto, B., Amylia, A., Maharani, A., & Ilham, A. (2023). Sistem Presensi Mahasiswa Menggunakan Fitur Deteksi Wajah Berbasis Cognitive Internet of Things. Jurnal Pekommas, 8(2), 129–136. https://doi.org/10.56873/jpkm.v8i2.5277

Magriyanti, A. A., & Mustofa, Z. (2020). Implementasi Sistem Informasi Presensi Kehadiran Siswa Menggunakan Fingerprint Terintegrasi dengan SMS Gateway. Jurnal Teknologi Informasi Dan Komunikasi, 11(1), 56–66.

Maliki, I., & Febriansyah, A. (2023). Implementation of Convolutional Neural Network–Extreme Learning Machine for Handwriting Recognition of Sundanese Script. 2023 9th International Conference on Signal Processing and Intelligent Systems (ICSPIS), 1–4. https://doi.org/10.1109/ICSPIS59665.2023.10402761

Marpaung, F., Khairina, N., Muliono, R., Muhathir, M., & Susilawati, S. (2024). Klasifikasi Daun Teh Siap Panen Menggunakan Convolutional Neural Network Arsitektur Mobilenetv2. Jurnal Teknoinfo, 18(1), 215–225.

Mayasari, M., Mulyana, D. I., & Yel, M. B. (2022). Komparasi klasifikasi jenis tanaman rimpang menggunakan principal component analiysis, support vector machine, k-nearest neighbor dan decision tree. JTIK (Jurnal Teknik Informatika Kaputama), 6(2), 644–655.

Megawati, M., & Mulyana, D. I. (2023). Optimasi Deteksi Wajah Hijab Dengan Menggunakan Data Augmentation dan Metode Convolutional Neural Network (CNN). JUSTE (Journal of Science and Technology), 3(2), 99–110.

Murdika, U., Alif, M., & Mulyani, Y. (2021). Identifikasi Kualitas Buah Tomat dengan Metode PCA (Principal Component Analysis) dan Backpropagation. Electrician: Jurnal Rekayasa Dan Teknologi Elektro, 15(3), 175–180. https://doi.org/10.51135/justevol3issue2page99-110

Nuraeni, R., Fitri, S., & Riki, C. (2023). Implementasi MVC (Model View Controller) Pada Perancangan Aplikasi Presensi Berbasis Web (Preparasi)(Studi Kasus SMK Nurul Fitri). PRODUKTIF: Jurnal Ilmiah Pendidikan Teknologi Informasi, 7(2), 671–681.

Nurmaini, S., Rachmatullah, M. N., Sapitri, A. I., Darmawahyuni, A., Jovandy, A., Firdaus, F., Tutuko, B., & Passarella, R. (2020). Accurate detection of septal defects with fetal ultrasonography images using deep learning-based multiclass instance segmentation. IEEE Access, 8, 196160–196174. https://doi.org/10.1109/ACCESS.2020.3034367

Park, S., Choi, B. G., Oh, K.-I., Kim, S. E., Lee, J. H., Lee, J. J., & Kang, S. W. (2017). Image compression based on MR-CNN (modified region convolutional neural network). 2017 International SoC Design Conference (ISOCC), 292–293. https://doi.org/10.1109/ISOCC.2017.8368901

Pratama, A. P., Yasin, V., & Sianipar, A. Z. (2021). Perancangan aplikasi sistem presensi karyawan berbasis web di PT. PWS Reinsurance Broker Indonesia. Jurnal Widya, 2(2), 115–128.

Pratama, N., Liebenlito, M., & Irene, Y. (2024). Perbandingan Model Klasifikasi Transfer Learning Convolutional Neural Network Tumor Otak menggunakan Citra Magnetic Resonance Imaging. Jurnal Sehat Indonesia (JUSINDO), 6(01), 308–318. https://doi.org/10.54593/awl.v2i2.24

Pratiwi, A. O. C. (2023). Klasifikasi Jenis Anggur Berdasarkan Bentuk Daun Menggunakan Convolutional Neural Network Dan K-Nearest Neighbor. Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 3(2), 201–224. https://doi.org/10.55606/juitik.v3i2.535

Rintjap, A. S., Sompie, S. R. U. A., & Lantang, O. (2014). Aplikasi absensi siswa menggunakan sidik jari di Sekolah Menengah Atas Negeri 9 Manado. Jurnal Teknik Elektro Dan Komputer, 3(3), 1–5.

Rozi, F., Restiawan, P., & Sukmana, F. (2023). Rancang Bangun Sistem Presensi Siswa Menggunakan Sensor RFID dan Website Berbasis PHP & MYSQL. JIMP-Jurnal Informatika Merdeka Pasuruan, 7(3), 115–119. https://doi.org/10.51213/jimp.v7i3.737

Sari, I. P., Ramadhani, F., Satria, A., & Apdilah, D. (2023). Implementasi Pengolahan Citra Digital dalam Pengenalan Wajah menggunakan Algoritma PCA dan Viola Jones. Hello World Jurnal Ilmu Komputer, 2(3), 146–157. https://doi.org/10.56211/helloworld.v2i3.346

Satria, A. F., Adam, R. I., & Carudin, C. (2021). Analisis Digital Watermarking untuk Otentikasi pada Citra Manipulasi Menggunakan Metode Least Significant Bit. Edumatic: Jurnal Pendidikan Informatika, 5(2), 204–213. https://doi.org/10.29408/edumatic.v5i2.3901

Sibirtsev, S., Zhai, S., Neufang, M., Seiler, J., & Jupke, A. (2023). Mask R-CNN based droplet detection in liquid–liquid systems, Part 2: Methodology for determining training and image processing parameter values improving droplet detection accuracy. Chemical Engineering Journal, 473, 144826. https://doi.org/10.1016/j.cej.2023.144826

Tubagus, A. S., Mahdi, R. S., Rizal, A., & Suharso, A. (2021). Analisis Perbandingan Teknik Video Codec H. 264/AVC, H. 265/HEVC, VP9 dan AV1. Edumatic: Jurnal Pendidikan Informatika, 5(2), 187–195. https://doi.org/10.29408/edumatic.v5i2.3850

Yusuf, A., Wihandika, R. C., & Dewi, C. (2019). Klasifikasi emosi berdasarkan ciri wajah menggunakan convolutional neural network. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(11), 10595–10604.

Downloads

Published

2024-06-20