Sistem Forecasting Permintaan Tempe menggunakan Metode Weighted Moving Average
DOI:
https://doi.org/10.29408/edumatic.v8i1.25632Keywords:
forecasting system, tempe, metode weighted moving averageAbstract
Information systems are created in stores in order to easily process data and produce the information needed quickly, accurately, precisely, effectively, and efficiently, reducing spending costs. The purpose of this study is to produce a forecasting system for tempeh demand to suit consumer needs when marketed. This type of research is research and development using the waterfall model. This model consists of stages of analysis, design, implementation, and testing. The analysis was conducted to obtain the needed data regarding tempeh using the weighted moving average (WMA) method. While we make this design, such as flowcharts, use cases, and data flow diagrams, Furthermore, the implementation of the women's tempeh factory was carried out, and testing was carried out using black box testing. The data we use is request data from September 29, 2023, to December 23, 2023. Our findings show that the mean absolute percentage error (MAPE) to predict tempeh demand is 3.83%; this result is quite small, so the accuracy rate obtained is 96.17%. In addition, the results of the system we developed are also in accordance with the results of manual calculations. This is also evidenced by the absence of errors that occur after testing using black box testing. So that this system can be used to manage tempeh, it is ready to be marketed by the female tempeh factory.
References
Awanda, R., & Oktafianto, K. (2021). Peramalan Permintaan Paving Menggunakan Metode Weighted Moving Average dan Exponential Smoothing. MathVision: Jurnal Matematika, 3(1), 14–18. https://doi.org/10.55719/mv.v3i1.252
Azzahra, A., Ramdhan, W., & Kifti, W. M. (2022). Single Exponential Smoothing: Metode Peramalan Kebutuhan Vaksin Campak. Edumatic: Jurnal Pendidikan Informatika, 6 (2), 215–223. https://doi.org/10.29408/edumatic.v6i2.6299
Fitriani, D., & Hwihanus, H. (2023). Peranan Sistem Informasi Manajemen Terhadap Perkembangan E-Commerce dalam Pengambilan Keputusan Bagi Usaha UMKM. Jurnal Kajian Dan Penalaran Ilmu Manajemen, 1(1), 64–77.
Hariadi, W., & Sulantari, S. (2022). Forecasting Tingkat Inflasi Year-on-Year Indonesia Dengan Metode Weighted Moving Average (WMA). UJMC (Unisda Journal of Mathematics and Computer Science), 8(2), 45–54.
Kandoli, L. (2023). Pengembangan Kue Brownies Berbahan Dasar Tempe Menjadi Rainbrow. GEARBOX: Jurnal Pendidikan Teknik Mesin, 4(1), 320–330.
Latif, M., & Herdiansyah, R. (2022). Peramalan Persediaan Barang Menggunakan Metode Weighted Moving Average dan Metode Double Exponential Smoothing. Journal of Information System Research (JOSH), 3(2), 137–142. https://doi.org/10.47065/josh.v3i2.1232
Lusiana, A., & Yuliarty, P. (2020). Penerapan Metode Peramalan (Forecasting) pada Permintaan Atap di PT X. Industri Inovatif: Jurnal Teknik Industri, 10(1), 11–20. https://doi.org/10.36040/industri.v10i1.2530
Manan, A. (2023). Pendidikan Islam dan Perkembangan Teknologi: Menggagas Harmoni dalam Era Digital. SCHOLASTICA: Jurnal Pendidikan Dan Kebudayaan, 5(1), 56–73.
Marpaung, N., Rahmawati, R., & Azhar, Z. (2021). Penerapan Metode Weight Moving Avarage Untuk Peramalan Persediaan Kosmetik Pada Toko Robin. Seminar Nasional Informatika (SENATIKA), 448–453.
Muktamar, A., & Ramadani, T. F. (2023). Pengambilan Keputusan Dalam Kepemimpinan. Journal Of International Multidisciplinary Research, 1(2), 1141–1158.
Mulyawati, S. N. E., & Kartikasari, M. D. (2024). Efektivitas Metode Hibrida ARIMA-MLP untuk Peramalan Nilai Tukar Petani. Jambura Journal of Mathematics, 6(1), 92–101. https://doi.org/10.37905/jjom.v6i1.23944
Muttaqin, W. M. I., Ramdhan, W., & Kifti, W. M. (2022). Sistem Peramalan Permintaan Darah dengan Metode Simple Moving Average. Edumatic: Jurnal Pendidikan Informatika, 6(2), 242–251. https://doi.org/10.29408/edumatic.v6i2.6326
Prasetyo, A., & Hartoyo, E. (2021). Analisis Resiko Usaha Industri Tempe Di Kota Surakarta. Jurnal Ilmiah Agrineca, 21(2), 84–90.
Rizqi, M., Cahya, A., & El Maida, N. (2021). Implementasi Metode Weighted Moving Average Untuk Sistem Peramalan Penjualan Markas Coffee. INFORMAL: Informatics Journal, 6(3), 154–159. https://doi.org/10.19184/isj.v6i3.28467
Sari, D. J., Saputra, H., & Nasution, A. (2022). The Use of The WMA Method Predicts The Inventory of Tofu Raw Materials Case Study Industry Tahu Iyus. Jurnal Teknik Informatika (JUTIF), 3(2), 429–436. https://doi.org/10.20884/1.jutif.2022.3.6.412
Sari, V., Firdausi, F., & Azhar, Y. (2020). Perbandingan Prediksi Kualitas Kopi Arabika dengan Menggunakan Algoritma SGD, Random Forest dan Naive Bayes. Edumatic: Jurnal Pendidikan Informatika, 4(2), 1–9. https://doi.org/10.29408/edumatic.v4i2.2202
Setiawan, I. (2021). Rancang Bangun Aplikasi Peramalan Persediaan Stok Barang Menggunakan Metode Weighted Moving Average (WMA) Pada Toko Barang XYZ. Jurnal Teknik Informatika, 13(3), 1–9.
Sihombing, L. O., Hannie, H., & Dermawan, B. A. (2021). Sentimen Analisis Customer Review Produk Shopee Indonesia Menggunakan Algortima Naïve Bayes Classifier. Edumatic: Jurnal Pendidikan Informatika, 5(2), 233–242. https://doi.org/10.29408/edumatic.v5i2.4089
Silvya, Z., Zakir, A., & Irwan, D. (2020). Penerapan Metode Weighted Moving Average Untuk Peramalan Persediaan Produk Farmasi. JiTEKH, 8(2), 59–64. https://doi.org/10.35447/jitekh.v8i2.220
Suhendra, C. A., Asfi, M., Lestari, W. J., & Syafrinal, I. (2021). Sistem peramalan persediaan sparepart menggunakan metode weight moving average dan reorder point. MATRIK: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(2), 343–354. https://doi.org/10.30812/matrik.v20i2.1052
Suroso, F., Rahmah, G. M., & Permana, D. R. A. (2023). Implementasi Sistem Peramalan Kebutuhan Spare Part Mobil Dengan WMA. Jurnal Teknologi Dan Manajemen, 21(2), 113–122. https://doi.org/10.52330/jtm.v21i2.136
Syafira, S., Hutahaean, J., & Santoso, S. (2022). Perbandingan Metode SMA dan MWA Dalam Memprediksi Jumlah Penjualan Alat Olahraga. Building of Informatics, Technology and Science (BITS), 3(4), 617–631. https://doi.org/10.47065/bits.v3i4.1409
Syafwan, H., Siagian, F., Putri, P., & Handayani, M. (2021). Forecasting Jumlah Pengangguran Di Kabupaten Asahan Menggunakan Metode Weighted Moving Average. JTIK (Jurnal Teknik Informatika Kaputama), 5(2), 234–239.
Ustadatin, F., Muqtadir, A., & Arifia, A. (2023). Implementasi Metode Weighted Moving Average (WMA) Pada Prediksi Harga Bahan Pokok. Komputika: Jurnal Sistem Komputer, 12(2), 83–90. https://doi.org/10.34010/komputika.v12i2.10304
Yudo, E., & Ariyanto, A. (2022). PkM Mesin Pengiris Keripik Tempe Bagi Pengrajin Olahan Tempe Di Dusun Cungfo. Jurnal Pengabdian Masyarakat Polmanbabel, 2(02), 82–87. https://doi.org/10.33504/dulang.v2i02.214
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sefty Meliani, Yessica Siagian, Ricki Ananda
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.