Analisis Sentimen Ibu Kota Nusantara menggunakan Algoritma Support Vector Machine dan Naïve Bayes

Authors

  • Andra Setiawan Program Studi Sistem Informasi, Universitas Teknokrat Indonesia
  • Ryan Randy Suryono Program Studi Sistem Informasi, Universitas Teknokrat Indonesia https://orcid.org/0000-0001-9378-8148

DOI:

https://doi.org/10.29408/edumatic.v8i1.25667

Keywords:

ibu kota nusantara, support vector machine, naïve bayes, smote, sentiment analysis

Abstract

The Government's policy of moving the Indonesian capital city (IKN) is considered controversial, sparking various responses from the public, especially on the social media platform X. This research aims to analyze tweet sentiment related to IKN and compare two algorithms. In this experiment, we collected 5,128 tweets regarding IKN from the X application. The dataset was classified into 2,598 positive sentiments and 1,659 negative sentiments. To analyze these sentiments, we used Text Mining techniques, comparing the Support Vector Machine (SVM) and Naive Bayes algorithms. To improve the performance of these algorithms in analyzing the data, SMOTE optimization was employed to address data imbalance. Our findings show that the SVM algorithm achieves an accuracy of 84%, while the Naive Bayes algorithm achieves an accuracy of 77%. Thus, it can be concluded that the SVM algorithm is superior to the Naive Bayes algorithm. Furthermore, the use of SMOTE optimization proved to enhance the ability of both algorithms to identify positive sentiment, as evidenced by the precision, recall, and F1-Score values. The SVM algorithm achieved a precision of 82%, recall of 86%, and F1-Score of 84%, while the Naive Bayes algorithm achieved a precision of 71%, recall of 92%, and F1-Score of 80%.

Author Biography

Ryan Randy Suryono, Program Studi Sistem Informasi, Universitas Teknokrat Indonesia

Dr. Ryan Randy Suryono is a lecturer at the Faculty of Engineering and Computer Sciences, Universitas Teknokrat Indonesia. He received a Bachelor's degree in Informatics at STMIK Teknokrat Lampung, then a Master's degree in Information Systems at Institut Teknologi Sepuluh Nopember Surabaya, and a Doctorate in Computer Science at Universitas Indonesia. His research interest includes Text Mining, Fintech, e-Business, and e-Government.

References

Anjani, A. F., Anggraeni, D., & Tirta, I. M. (2023). Implementasi Random Forest Menggunakan SMOTE untuk Analisis Sentimen Ulasan Aplikasi Sister for Students UNEJ. Jurnal Nasional Teknologi Dan Sistem Informasi, 9(2), 163–172. https://doi.org/10.25077/teknosi.v9i2.2023.163-172

Dimas Lutfiyanto, M., Setiawan, E. B., & Si, S. (2021). Expansion Feature dengan Word2Vec untuk Analisis Sentimen pada Opini Politik di Twitter dengan Klasifikasi Support Vector Machine, Naïve Bayes, dan Random Forest. EProceedings of Engineering, 8(5), 10399–10410.

Duei Putri, D., Nama, G. F., & Sulistiono, W. E. (2022). Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika Dan Teknik Elektro Terapan, 10(1), 34–40. https://doi.org/10.23960/jitet.v10i1.2262

Hanafiah, A., Nasution, A. H., Arta, Y., Wandri, R., Nasution, H. O., & Mardafora, J. (2023). Sentimen Analisis Terhadap Customer Review Produk Shopee Berbasis Wordcloud Dengan Algoritma Naïve Bayes Classifier. INTECOMS: Journal of Information Technology and Computer Science, 6(1), 230–236. https://doi.org/10.31539/intecoms.v6i1.5845

Hendrawan, I. R., Utami, E., & Hartanto, A. D. (2022). Comparison of Naïve Bayes Algorithm and XGBoost on Local Product Review Text Classification. Edumatic: Jurnal Pendidikan Informatika, 6(1), 143–149. https://doi.org/10.29408/edumatic.v6i1.5613

Hidayatullah, H., Purwantoro, P., & Umaidah, Y. (2023). Penerapan Naïve Bayes Dengan Optimasi Information Gain Dan Smote Untuk Analisis Sentimen Pengguna Aplikasi Chatgpt. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1546–1553. https://doi.org/10.36040/jati.v7i3.6887

Huda, C., & Yel, M. B. (2024). Analisa Sentimen Tentang Ibu Kota Nusantara (IKN) Dengan Menggunakan Algoritma K-Nearest Neighbors (KNN) dan Naïve Bayes. Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), 7(1), 126-130. https://doi.org/10.55338/jikomsi.v7i1.2846

Kurniawan, A., & Waluyo, S. (2022, September). Penerapan Algoritma Naive Bayes Dalam Analisis Sentimen Pemindahan Ibukota Pada Twitter. In Prosiding Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), 1(1), 455-461.

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI), 5(2), 697–711.

Nugroho, A., & Rilvani, E. (2023). Penerapan Metode Oversampling SMOTE Pada Algoritma Random Forest Untuk Prediksi Kebangkrutan Perusahaan. Techno.Com, 22(1), 207–214. https://doi.org/10.33633/tc.v22i1.7527

Rahayu, S., MZ, Y., Bororing, J. E., & Hadiyat, R. (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic: Jurnal Pendidikan Informatika, 6(1), 98–106. https://doi.org/10.29408/edumatic.v6i1.5433

Saputra, A., & Noor Hasan, F. (2023). Analisis Sentimen Terhadap Aplikasi Coffee Meets Bagel Dengan Algoritma Naïve Bayes Classifier. SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan, 2(2), 465–474. https://doi.org/10.54443/sibatik.v2i2.579

Sari, P. K., & Suryono, R. R. (2024). Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse. Jurnal Mnemonic, 7(1), 31–39. https://doi.org/10.36040/mnemonic.v7i1.8977

Septiani, R. K., Anggraeni, S., & Saraswati, S. D. (2022). Klasifikasi Sentimen Terhadap Ibu Kota Nusantara (IKN) pada Media Sosial Menggunakan Naive Bayes. TEKNIKA: Jurnal Ilmiah Bidang Ilmu Rekayasa, 16(2), 245–254.

Sihombing, L. O., Hannie, H., & Dermawan, B. A. (2021). Sentimen Analisis Customer Review Produk Shopee Indonesia Menggunakan Algortima Naïve Bayes Classifier. Edumatic: Jurnal Pendidikan Informatika, 5(2), 233–242. https://doi.org/10.29408/edumatic.v5i2.4089

Sihombing, P. R., & Yuliati, I. F. (2021). Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(2), 417–426. https://doi.org/10.30812/matrik.v20i2.1174

Singgalen, Y. A. (2022). Analisis Performa Algoritma NBC, DT, SVM dalam Klasifikasi Data Ulasan Pengunjung Candi Borobudur Berbasis CRISP-DM. Building of Informatics, Technology and Science (BITS), 4(3), 1634–1646. https://doi.org/10.47065/bits.v4i3.2766

Sitio, G. Y., Rumapea, S. A., & Lumbanraja, P. (2023). Analisis Sentimen Pemindahan Ibu Kota Negara Di Media Sosial Twitter Menggunakan metode Convolutional Neural Network (CNN). METHOTIKA: Jurnal Ilmiah Teknik Informatika, 3(2), 97-104.

Wahyudi, F. S., Kunci, K., Ibu, P., Baru, K., Ekonomi, P., & Pemerintahan, T. K. (2023). Humantech Jurnal Ilmiah Multi Disiplin Indonesia Proyek Pemindahan Ikn: Upaya Tata Kelola Pemerintahan Yang Baik Ataukah Untuk Pengembangan Ekonomi. Jurnal Ilmiah Multidisiplin Indonesia, 2(9), 1890–1908.

Yolanda, N., Santi, I. H., & Permadi, D. F. H. (2022). Analisis Sentimen Analisis Sentimen Popularitas Aplikasi Moodle dan Edmodo Menggunakan Algoritma Support Vector Machine. Jurnal Algoritme, 3(1), 48–59. https://doi.org/10.35957/algoritme.v3i1.3313

Downloads

Published

2024-06-20