Real Time Student Emotion Detection using Yolov5

Authors

DOI:

https://doi.org/10.29408/edumatic.v8i1.25726

Keywords:

emotion detection, education, computer vision, yolov5

Abstract

The introduction of technology in the field of Education, especially in learner emotion detection plays an important role in the modern educational context. This research introduces the application of the YOLOV5 algorithm to detect learner emotions in real time during the classroom learning process. This research aims to see the performance of YOLOv5 in detecting student emotions by comparing YOLOv5 variants, namely YOLOv5m, YOLOv5n, YOLOv5l, YOLov5s, and YOLOv5x. The dataset used is a video recording of the learning process taken in classroom A3-02 in Building A, Informatics Engineering Study Program, Faculty, Engineering, University of Mataram, which is grouped into 3 classes, namely (Bored, Happy, and Neutral) with a total dataset of 451 images with dataset distribution divided into 87% training data, 8% validation data, and 4% testing data. Based on the tests conducted, YOLOv5m showed the best results with the highest accuracy reaching 89.60% on Mean Average Precision, with batch settings of 14 and epochs of 150. These results indicate that the YOLOv5 algorithm is effective in detecting learner emotions with a satisfactory level of performance and makes a significant contribution to learner emotion detection, underscoring the potential of this technology in enhancing interaction and learning in educational environments.

References

Ashar, M. H., & Suarna, D. (2022). Implementasi Algoritma YOLOv5 dalam Mendeteksi Penggunaan Masker Pada Kantor Biro Umum Gubernur Sulawesi Barat. KLIK: Kajian Ilmiah Informatika dan Komputer, 3(3), 298-302. https://doi.org/10.29407/stains.v3i1.4360

Bimantoro, F., Pasek, I. G., Wijaya, S., & Aohana, M. R. (2024). Pendeteksian Kecurangan Ujian Melalui CCTV Menggunakan Algoritma YOLOv5. Prosiding Seminar Nasional Teknologi Dan Sains Tahun , 3(3), 109–117.

Bimantoro, F., Wijaya, I. G. P. S., & Aohana, M. R. (2024, January). Pendeteksian Kecurangan Ujian Melalui CCTV Menggunakan Algoritma YOLOv5: Exam Cheating Detection Through CCTV Using YOLOv5 Algorithm. Seminar Nasional Teknologi & Sains, 3(1), 109-117. https://doi.org/10.29407/stains.v3i1.4360

Dewi, C., Chen, R. C., Zhuang, Y. C., & Christanto, H. J. (2022). Yolov5 Series Algorithm for Road Marking Sign Identification. Big Data and Cognitive Computing, 6(4), 1-16. https://doi.org/10.3390/bdcc6040149

Du, Y., & Jiang, X. (2024). A Real-Time Small Target Vehicle Detection Algorithm with an Improved YOLOv5m Network Model. Computers, Materials and Continua, 78(1), 303–327. https://doi.org/10.32604/cmc.2023.046068

Durve, M., Bonaccorso, F., Montessori, A., Lauricella, M., Tiribocchi, A., & Succi, S. (2021). Tracking droplets in soft granular flows with deep learning techniques. European Physical Journal Plus, 136(8). https://doi.org/10.1140/epjp/s13360-021-01849-3

Fang, Y., Guo, X., Chen, K., Zhou, Z., & Ye, Q. (2021). Accurate and Automated Detection of Surface Knots on Sawn Timbers Using YOLO-V5 Model. BioResources, 16(3), 5390–5406. https://doi.org/10.15376/biores.16.3.5390-5406

Hasan, M. A., & Lazem, A. H. (2023). Facial Human Emotion Recognition by Using YOLO Faces Detection Algorithm. Central Asian Journal of Mathematical Theory And Computer Sciences, 4(10), 1-11. https://doi.org/10.21070/joincs.v6i2.1629

Iskandar Mulyana, D., & Rofik, M. A. (2022). Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5. Jurnal Pendidikan Tambusai, 6(3), 13971–13982. https://doi.org/10.31004/jptam.v6i3.4825

Jaiswal, S., & Nandi, G. C. (2020). Robust real-time emotion detection system using CNN architecture. Neural Computing and Applications, 32(15), 11253–11262. https://doi.org/10.1007/s00521-019-04564-4

Jannah, N., Wibowo, S. A., & Siadari, T. S. (2022). Eksploitasi Fitur Untuk Peningkatan Kinerja Deteksi Objek Berbasis Pada Pesawat Tanpa Awak. E-Proceeding of Engineering, 8(6), 2943–2950.

Kaulard, K., Cunningham, D. W., Bülthoff, H. H., & Wallraven, C. (2012). The MPI facial expression database—a validated database of emotional and conversational facial expressions. PloS one, 7(3), e32321. https://doi.org/10.1371/journal.pone.0032321

Ko, B. C. (2018). A brief review of facial emotion recognition based on visual information. Sensors (Switzerland), 18(2), 1-20. https://doi.org/10.3390/s18020401

Lee, J., & Hwang, K. il. (2022). YOLO with adaptive frame control for real-time object detection applications. Multimedia Tools and Applications, 81(25), 36375–36396. https://doi.org/10.1007/s11042-021-11480-0

Lina, L., Marunduh, A. A., Wasino, W., & Ajienegoro, D. (2022). Identifikasi Emosi Pengguna Konferensi Video Menggunakan Convolutional Neural Network. Jurnal Teknologi Informasi dan Ilmu Komputer, 9(5), 1047-1054. https://doi.org/10.25126/jtiik.2022955269

Masurekar, O., Jadhav, O., Kulkarni, P., & Patil, S. (2020). Real time object detection using YOLOv3. International Research Journal of Engineering and Technology (IRJET), 7(03), 3764-3768.

Maulana, A., & Andika, E. (2023, November). Implementasi Face Recognition pada Absensi Siswa Menggunakan YOLOv5. Seminar Nasional Teknologi dan Riset Terapan), 5, 441-445.

Olorunshola, O. E., Irhebhude, M. E., & Evwiekpaefe, A. E. (2023). A Comparative Study of YOLOv5 and YOLOv7 Object Detection Algorithms. Journal of Computing and Social Informatics, 2(1), 1–12. https://doi.org/10.33736/jcsi.5070.2023

Riyantoko, P. A., Sugiarto, & Hindrayani, K. M. (2021). Facial Emotion Detection Using Haar-Cascade Classifier and Convolutional Neural Networks. Journal of Physics: Conference Series, 1844(1). https://doi.org/10.1088/1742-6596/1844/1/012004

Shaikh, A., Mishra, K., Kharade, P., & Kanojia, M. (2023). Comprehensive Study on Emotion Detection with Facial Expression Images Using YOLO Models. Journal of Information Assurance & Security, 18(2), 58–66.

Widodo, S., Setiawan, D., Ridwan, T., & Ambari, R. (2022). Perancangan Deteksi Emosi Manusia berdasarkan Ekspresi Wajah Menggunakan Algoritma VGG16. Syntax : Jurnal Informatika, 11(01), 01–12. https://doi.org/10.35706/syji.v11i01.6594

Wijanarko, E. W. S., & Adhisa, R. R. (2023). Media Pembelajaran Object Detection Perangkat Jaringan Komputer menggunakan Machine Learning berbasis Desktop. Edumatic: Jurnal Pendidikan Informatika, 7(2), 207–216. https://doi.org/10.29408/edumatic.v7i2.19826

Zhang, H., Jolfaei, A., & Alazab, M. (2019). A Face Emotion Recognition Method Using Convolutional Neural Network and Image Edge Computing. IEEE Access, 7, 159081–159089. https://doi.org/10.1109/ACCESS.2019.2949741

Zhong, H., Han, T., Xia, W., Tian, Y., & Wu, L. (2023). Research on real-time teachers’ facial expression recognition based on YOLOv5 and attention mechanisms. EURASIP Journal on Advances in Signal Processing, 2023(1), 2-15. https://doi.org/10.1186/s13634-023-01019-w

Downloads

Published

2024-06-20

How to Cite

Ulandari, A. K., Bimantoro, F., & Wijaya, I. G. P. S. (2024). Real Time Student Emotion Detection using Yolov5 . Edumatic: Jurnal Pendidikan Informatika, 8(1), 222–231. https://doi.org/10.29408/edumatic.v8i1.25726