Penerapan Random Oversampling dan Algoritma Boosting untuk Memprediksi Kualitas Buah Jeruk
DOI:
https://doi.org/10.29408/edumatic.v8i1.25836Keywords:
boosting algorithms, orange quality, random oversamplingAbstract
According to the 2019 data, global orange production has increased significantly, reaching 79 million tons. However, despite the availability of various types of oranges in Indonesian markets, many vendors still sell low-quality oranges. To address this issue, researchers have applied random oversampling and boosting algorithms to predict orange quality, using the public Orange Quality Analysis Dataset. This study uses random oversampling to address data imbalance and combines it with boosting algorithms like Adaboost, Gradient Boosting, Light GBM, and CatBoost. The data features considered include size, weight, sweetness level, acidity level, and others. The accuracy of the boosting algorithms used varied, with CatBoost showing the highest accuracy rate of 91.42%. The hope is that this research can help orange producers create high-quality products and reduce the occurrence of low-quality oranges, ultimately providing consumers with better oranges. Additionally, this can help producers market their oranges both domestically and internationally.
References
Abdullah, A., & Sandi, K. (2021). Sistem Prediksi Rasa Buah Jeruk Menggunakan Metode K-Nearest Neighbor. METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi, 7(2), 7-13. https://doi.org/10.46880/mtk.v7i2.457
Alif, M. D. N., & Fahrudin, N. F. (2024). Performance Analysis of Oversampling and Undersampling on Telco Churn Data Using Naive Bayes, SVM And Random Forest Methods. E3S Web of Conferences , 484, 1-13. EDP Sciences. https://doi.org/10.1051/e3sconf/202448402004
Aryanti, R., Misriati, T., & Hidayat, R. (2023). KLIK: Kajian Ilmiah Informatika dan Komputer Klasifikasi Risiko Kesehatan Ibu Hamil Menggunakan Random Oversampling Untuk Mengatasi Ketidakseimbangan Data. Media Online, 3(5), 409–416.
Bahari, S. D. P., & Latifa, U. (2023). Klasifikasi Buah Segar Menggunakan Teknik Computer Vision Untuk Pendeteksian Kualitas Dan Kesegaran Buah. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1567-1573. https://doi.org/10.36040/jati.v7i3.6871
Bangun, P., & Sihombing, M. (2021). Pengolahan Citra Untuk Identifikasi Kematangan Buah Jeruk Dengan Menggunakan Metode Backpropagation Berdasarkan Nilai HSV. Jurnal Teknik Informatika Kaputama (JTIK), 5(1), 85-91.
Barkah, M. F. (2020). Klasifikasi Rasa Buah Jeruk Pontianak Berdasarkan Warna Kulit Buah Jeruk Menggunakan Metode K-Nearest Neighbor. Coding Jurnal Komputer dan Aplikasi, 8(1), 55-66
Diantika, S. (2023). Penerapan Teknik Random Oversampling Untuk Mengatasi Imbalance Class Dalam Klasifikasi Website Phishing Menggunakan Algoritma Lightgbm. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 19-25. https://doi.org/10.36040/jati.v7i1.6006
Ganie, S. M., Pramanik, P. K. D., Mallik, S., & Zhao, Z. (2023). Chronic kidney disease prediction using boosting techniques based on clinical parameters. PLoS ONE, 18(12 December). https://doi.org/10.1371/journal.pone.0295234
Ginting, D., & Ginting, D. G. (2021). Perananan Keagenan Kapal Dalam Melayani Pengisian Air Bersih Untuk Kebutuhan Km. Amrta Vii Pada Pt. Gesuri Lioyd Cabang Kuala Tanjung. Journal of Maritime and Education (JME), 3(2), 245-249. https://doi.org/10.54196/jme.v3i2.47
Jiang, Z., Pan, T., Zhang, C., & Yang, J. (2021). A new oversampling method based on the classification contribution degree. Symmetry, 13(2), 1–13. https://doi.org/10.3390/sym13020194
Kim, Y., Lee, T., Hyun, Y., Coatanea, E., Mika, S., Mo, J., & Yoo, Y. (2023). Self-supervised representation learning anomaly detection methodology based on boosting algorithms enhanced by data augmentation using StyleGAN for manufacturing imbalanced data. Computers in Industry, 153, 104024. https://doi.org/10.1016/j.compind.2023.104024
Kristiawan, K., & Widjaja, A. (2021). Perbandingan Algoritma Machine Learning dalam Menilai Sebuah Lokasi Toko Ritel. Jurnal Teknik Informatika Dan Sistem Informasi, 7(1), 35-46. https://doi.org/10.28932/jutisi.v7i1.3182
Lindawati, L., Fadhli, M., & Wardana, A. S. (2023). Optimasi Gaussian Naïve Bayes dengan Hyperparameter Tuning dan Univariate Feature Selection dalam Prediksi Cuaca. Edumatic: Jurnal Pendidikan Informatika, 7(2), 237–246. https://doi.org/10.29408/edumatic.v7i2.21179
Mane, V., Belgaonkar, P., Dabhade, H., & Gandhe, A. (2023). Classification Comparison of Different Boosting Algorithms to Predict and Classify Conditions of Heart Disease. In Data Science and Intelligent Computing Techniques, 869–876. Soft Computing Research Society. https://doi.org/10.56155/978-81-955020-2-8-74
Manihuruk, D. S. B. H., Darwin, D., & Munawar, A. A. (2019). Penentuan Kualitas Buah Jeruk (Citrus Sinensis L) Menggunakan Teknologi Laser Photo-Acoustics (LPAS) Dengan Metode Support Vector Machine (SVM). Jurnal Ilmiah Mahasiswa Pertanian, 4(2), 377-386. https://doi.org/10.17969/jimfp.v4i2.10945
Maulana, M. D., Hadiana, A. I., & Umbara, F. R. (2023). Algoritma Xgboost Untuk Klasifikasi Kualitas Air Minum. JATI (Jurnal Mahasiswa Teknik Informatika), 7(5), 3251-3256. https://doi.org/10.36040/jati.v7i5.7308
Rahim, A. M. A., Pratiwi, I. Y. R., & Fikri, M. A. (2023). Klasifikasi Penyakit Jantung Menggunakan Metode Synthetic Minority Over-Sampling Technique Dan Random Forest Clasifier. Indonesian Journal of Computer Science, 12(5), 2995-3011. https://doi.org/10.33022/ijcs.v12i5.3413
Setiawan, D., Nugraha, A., & Luthfiarta, A. (2024). Komparasi Teknik Feature Selection Dalam Klasifikasi Serangan IoT Menggunakan Algoritma Decision Tree. Jurnal Media Informatika Budidarma, 8(1), 83-93.
Sidik, A. P., Amin, M., & Wilana, A. (2023). Implementasi Perancangan Klasifikasi Kualitas Buah Jeruk Berdasarkan Warna. JOURNAL ZETROEM, 5(1), 72-76.
Wicaksono, D. F., Basuki, R. S., & Setiawan, D. (2024). Peningkatan Performa Model Machine Learning XGBoost Classifier melalui Teknik Oversampling dalam Prediksi Penyakit AIDS. Jurnal Media Informatika Budidarma, 8(2), 736-747.
Zhu, L., Zhou, X., & Zhang, C. (2021). Rapid identification of high-quality marine shale gas reservoirs based on the oversampling method and random forest algorithm. Artificial Intelligence in Geosciences, 2, 76–81. https://doi.org/10.1016/j.aiig.2021.12.001
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Imanuel Khrisna Ananda, Ahmad Zainul Fanani, Dicky Setiawan, Duta Firdaus Wicaksono
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.