Optimasi Convolutional Neural Networks untuk Deteksi Kanker Payudara menggunakan Arsitektur DenseNet

Authors

  • Ryan Ali Mas'ud Program Teknik Informatika, Universitas Dian Nuswantoro
  • Junta Zeniarja Program Teknik Informatika, Universitas Dian Nuswantoro

DOI:

https://doi.org/10.29408/edumatic.v8i1.25883

Keywords:

convolutional neural networks (cnn), breast cancer detection, deep learning, densenet

Abstract

Breast cancer is a disease commonly suffered by women worldwide, ranking as the second-largest disease burden. In response to the urgent need for improved detection accuracy, Convolutional Neural Networks (CNNs) promise significant advancements. The objective of this research is to optimize the use of CNNs with the DenseNet architecture for breast cancer detection. The study employs quantitative methods, leveraging Deep Learning through CNNs. Mammography data is sourced from Kaggle, specifically the “Breast Histopathology Images” dataset. This dataset comprises 90,000 digital mammography images, which are preprocessed and divided proportionally for training, validation, and model testing. Research variables encompass CNN model parameters, training techniques, and the integration of imaging modalities to enhance breast cancer detection performance. The research focuses on processed mammography data, with accuracy and image quality as key evaluation metrics for breast cancer sample identification. Our findings demonstrate that the DenseNet architecture within CNNs achieves an impressive 92% accuracy in breast cancer detection. This remarkable performance signifies success in enhancing image quality and class prediction, aligning with the DenseNet architecture’s flow diagram. Ultimately, these results contribute significantly to effective breast cancer diagnosis by optimizing CNNs with the DenseNet architecture to improve image quality during breast cancer sampling.

References

Albakia, S. A. E., & Saputra, R. A. (2023). Identifikasi Jenis Daun Tanaman Obat Menggunakan Metode Convolutional Neural Network (CNN) Dengan Model VGG16. Jurnal Informatika Polinema, 9(4), 451-460. https://doi.org/10.33795/jip.v9i4.1420

Alsalihi, A., K. Aljobouri, H. ., & ALTameemi, E. A. K. (2022). GLCM and CNN Deep Learning Model for Improved MRI Breast Tumors Detection. International Journal of Online and Biomedical Engineering (iJOE), 18(12), 123–137. https://doi.org/10.3991/ijoe.v18i12.31897

Alshehri, A., & AlSaeed, D. (2022). Breast Cancer Detection in Thermography Using Convolutional Neural Networks (CNNs) with Deep Attention Mechanisms. Applied Sciences, 12(24), 1-19. https://doi.org/10.3390/app122412922

Balasubramaniam, S., Velmurugan, Y., Jaganathan, D., & Dhanasekaran, S. (2023). A modified LeNet CNN for breast cancer diagnosis in ultrasound images. Diagnostics, 13(17), 1-28. https://doi.org/10.3390/diagnostics13172746

Diwakaran, M., & Surendran, D. (2023). Breast Cancer Prognosis Based on Transfer Learning Techniques in Deep Neural Networks. Information Technology and Control, 52(2), 381-396. https://doi.org/10.5755/j01.itc.52.2.33208

Dewi, A. P. (2023). DJSN sebut kanker penyakit biaya tertinggi kedua setelah jantung. Antara News. Retrieved May 2, 2024, from DJSN sebut kanker penyakit biaya tertinggi kedua setelah jantung - ANTARA News

Ibrokhimov, B., & Kang, J. Y. (2022). Two-stage deep learning method for breast cancer detection using high-resolution mammogram images. Applied Sciences, 12(9), 1-14. https://doi.org/10.3390/app12094616

Jabeen, K., Khan, M. A., Alhaisoni, M., Tariq, U., Zhang, Y. D., Hamza, A., ... & Damaševičius, R. (2022). Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion. Sensors, 22(3), 1-23. https://doi.org/10.3390/s22030807

Jafari, Z., & Karami, E. (2023). Breast cancer detection in mammography images: A CNN-based approach with feature selection. Information, 14(7), 1-14. https://doi.org/10.3390/info14070410

Khan, M. M., Tazin, T., Zunaid Hussain, M., Mostakim, M., Rehman, T., Singh, S., Gupta, V., & Alomeir, O. (2022). Breast Tumor Detection Using Robust and Efficient Machine Learning and Convolutional Neural Network Approaches. Computational Intelligence and Neuroscience, 2022, 1-11. https://doi.org/10.1155/2022/6333573

Mohamed, T. I., Ezugwu, A. E., Fonou-Dombeu, J. V., Ikotun, A. M., & Mohammed, M. (2023). A bio-inspired convolution neural network architecture for automatic breast cancer detection and classification using rna-seq gene expression data. Scientific Reports, 13(1), 14644. https://doi.org/10.1155/2022/6333573

Qotrunnada, F. M., & Utomo, P. H. (2022). Metode Convolutional Neural Network untuk Klasifikasi Wajah Bermasker. Prisma, 5, 799-807.

Ramdhana, A. C., & Pratiwi, N. (2023). Perbandingan Kinerja Model Convolutional Neural Network pada Klasifikasi Kanker Kulit. Edumatic: Jurnal Pendidikan Informatika, 7(2), 197-206. https://doi.org/10.29408/edumatic.v7i2.19823

Rizaty, M. A. (2021). Ini Jenis Kanker yang Paling Banyak Diderita Penduduk Indonesia. Retrieved May 16, 2024, from Databoks website: https://databoks.katadata.co.id/datapublish/2021/06/29/ini-jenis-kanker-yang-paling-banyak-diderita-penduduk-indonesia

Roslidar, R., Rahman, A., Muharar, R., Syahputra, M. R., Arnia, F., Syukri, M., ... & Munadi, K. (2020). A review on recent progress in thermal imaging and deep learning approaches for breast cancer detection. IEEE access, 8, 116176-116194. https://doi.org/10.1109/ACCESS.2020.3004056

Sahu, A., Das, P. K., & Meher, S. (2023). High accuracy hybrid CNN classifiers for breast cancer detection using mammogram and ultrasound datasets. Biomedical Signal Processing and Control, 80, 104292. https://doi.org/10.1016/j.bspc.2022.104292

Trang, N. T. H., Long, K. Q., An, P. L., & Dang, T. N. (2023). Development of an artificial intelligence-based breast cancer detection model by combining mammograms and medical health records. Diagnostics, 13(3), 1-18. https://doi.org/10.3390/diagnostics13030346

Wang, L. (2022). Holographic Microwave Image Classification Using a Convolutional Neural Network. Micromachines, 13(12), 1-19. https://doi.org/10.3390/mi13122049

Zhang, Y., Liu, Y. L., Nie, K., Zhou, J., Chen, Z., Chen, J. H., ... & Su, M. Y. (2023). Deep learning-based automatic diagnosis of breast cancer on MRI using mask R-CNN for detection followed by ResNet50 for classification. Academic radiology, 30, S161-S171. https://doi.org/10.1016/j.acra.2022.12.038

Zhu, Z., Wang, S. H., & Zhang, Y. D. (2023). A survey of convolutional neural network in breast cancer. Computer modeling in engineering & sciences: CMES, 136(3), 2127-2172. https://doi.org/10.32604/cmes.2023.025484

Downloads

Published

2024-06-20