Optimasi Convolutional Neural Networks untuk Deteksi Kanker Payudara menggunakan Arsitektur DenseNet
DOI:
https://doi.org/10.29408/edumatic.v8i1.25883Keywords:
convolutional neural networks (cnn), breast cancer detection, deep learning, densenetAbstract
Breast cancer is a disease commonly suffered by women worldwide, ranking as the second-largest disease burden. In response to the urgent need for improved detection accuracy, Convolutional Neural Networks (CNNs) promise significant advancements. The objective of this research is to optimize the use of CNNs with the DenseNet architecture for breast cancer detection. The study employs quantitative methods, leveraging Deep Learning through CNNs. Mammography data is sourced from Kaggle, specifically the “Breast Histopathology Images” dataset. This dataset comprises 90,000 digital mammography images, which are preprocessed and divided proportionally for training, validation, and model testing. Research variables encompass CNN model parameters, training techniques, and the integration of imaging modalities to enhance breast cancer detection performance. The research focuses on processed mammography data, with accuracy and image quality as key evaluation metrics for breast cancer sample identification. Our findings demonstrate that the DenseNet architecture within CNNs achieves an impressive 92% accuracy in breast cancer detection. This remarkable performance signifies success in enhancing image quality and class prediction, aligning with the DenseNet architecture’s flow diagram. Ultimately, these results contribute significantly to effective breast cancer diagnosis by optimizing CNNs with the DenseNet architecture to improve image quality during breast cancer sampling.
References
Albakia, S. A. E., & Saputra, R. A. (2023). Identifikasi Jenis Daun Tanaman Obat Menggunakan Metode Convolutional Neural Network (CNN) Dengan Model VGG16. Jurnal Informatika Polinema, 9(4), 451-460. https://doi.org/10.33795/jip.v9i4.1420
Alsalihi, A., K. Aljobouri, H. ., & ALTameemi, E. A. K. (2022). GLCM and CNN Deep Learning Model for Improved MRI Breast Tumors Detection. International Journal of Online and Biomedical Engineering (iJOE), 18(12), 123–137. https://doi.org/10.3991/ijoe.v18i12.31897
Alshehri, A., & AlSaeed, D. (2022). Breast Cancer Detection in Thermography Using Convolutional Neural Networks (CNNs) with Deep Attention Mechanisms. Applied Sciences, 12(24), 1-19. https://doi.org/10.3390/app122412922
Balasubramaniam, S., Velmurugan, Y., Jaganathan, D., & Dhanasekaran, S. (2023). A modified LeNet CNN for breast cancer diagnosis in ultrasound images. Diagnostics, 13(17), 1-28. https://doi.org/10.3390/diagnostics13172746
Diwakaran, M., & Surendran, D. (2023). Breast Cancer Prognosis Based on Transfer Learning Techniques in Deep Neural Networks. Information Technology and Control, 52(2), 381-396. https://doi.org/10.5755/j01.itc.52.2.33208
Dewi, A. P. (2023). DJSN sebut kanker penyakit biaya tertinggi kedua setelah jantung. Antara News. Retrieved May 2, 2024, from DJSN sebut kanker penyakit biaya tertinggi kedua setelah jantung - ANTARA News
Ibrokhimov, B., & Kang, J. Y. (2022). Two-stage deep learning method for breast cancer detection using high-resolution mammogram images. Applied Sciences, 12(9), 1-14. https://doi.org/10.3390/app12094616
Jabeen, K., Khan, M. A., Alhaisoni, M., Tariq, U., Zhang, Y. D., Hamza, A., ... & Damaševičius, R. (2022). Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion. Sensors, 22(3), 1-23. https://doi.org/10.3390/s22030807
Jafari, Z., & Karami, E. (2023). Breast cancer detection in mammography images: A CNN-based approach with feature selection. Information, 14(7), 1-14. https://doi.org/10.3390/info14070410
Khan, M. M., Tazin, T., Zunaid Hussain, M., Mostakim, M., Rehman, T., Singh, S., Gupta, V., & Alomeir, O. (2022). Breast Tumor Detection Using Robust and Efficient Machine Learning and Convolutional Neural Network Approaches. Computational Intelligence and Neuroscience, 2022, 1-11. https://doi.org/10.1155/2022/6333573
Mohamed, T. I., Ezugwu, A. E., Fonou-Dombeu, J. V., Ikotun, A. M., & Mohammed, M. (2023). A bio-inspired convolution neural network architecture for automatic breast cancer detection and classification using rna-seq gene expression data. Scientific Reports, 13(1), 14644. https://doi.org/10.1155/2022/6333573
Qotrunnada, F. M., & Utomo, P. H. (2022). Metode Convolutional Neural Network untuk Klasifikasi Wajah Bermasker. Prisma, 5, 799-807.
Ramdhana, A. C., & Pratiwi, N. (2023). Perbandingan Kinerja Model Convolutional Neural Network pada Klasifikasi Kanker Kulit. Edumatic: Jurnal Pendidikan Informatika, 7(2), 197-206. https://doi.org/10.29408/edumatic.v7i2.19823
Rizaty, M. A. (2021). Ini Jenis Kanker yang Paling Banyak Diderita Penduduk Indonesia. Retrieved May 16, 2024, from Databoks website: https://databoks.katadata.co.id/datapublish/2021/06/29/ini-jenis-kanker-yang-paling-banyak-diderita-penduduk-indonesia
Roslidar, R., Rahman, A., Muharar, R., Syahputra, M. R., Arnia, F., Syukri, M., ... & Munadi, K. (2020). A review on recent progress in thermal imaging and deep learning approaches for breast cancer detection. IEEE access, 8, 116176-116194. https://doi.org/10.1109/ACCESS.2020.3004056
Sahu, A., Das, P. K., & Meher, S. (2023). High accuracy hybrid CNN classifiers for breast cancer detection using mammogram and ultrasound datasets. Biomedical Signal Processing and Control, 80, 104292. https://doi.org/10.1016/j.bspc.2022.104292
Trang, N. T. H., Long, K. Q., An, P. L., & Dang, T. N. (2023). Development of an artificial intelligence-based breast cancer detection model by combining mammograms and medical health records. Diagnostics, 13(3), 1-18. https://doi.org/10.3390/diagnostics13030346
Wang, L. (2022). Holographic Microwave Image Classification Using a Convolutional Neural Network. Micromachines, 13(12), 1-19. https://doi.org/10.3390/mi13122049
Zhang, Y., Liu, Y. L., Nie, K., Zhou, J., Chen, Z., Chen, J. H., ... & Su, M. Y. (2023). Deep learning-based automatic diagnosis of breast cancer on MRI using mask R-CNN for detection followed by ResNet50 for classification. Academic radiology, 30, S161-S171. https://doi.org/10.1016/j.acra.2022.12.038
Zhu, Z., Wang, S. H., & Zhang, Y. D. (2023). A survey of convolutional neural network in breast cancer. Computer modeling in engineering & sciences: CMES, 136(3), 2127-2172. https://doi.org/10.32604/cmes.2023.025484
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ryan Ali Mas'ud, Junta Zeniarja
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.