Pengembangan Sistem Monitoring Kinerja FWG untuk Optimalisasi Produksi Air Tawar di Atas Kapal
DOI:
https://doi.org/10.29408/edumatic.v8i2.27250Keywords:
freshwater, fwg, vessel, monitoringAbstract
Fresh water is a basic need for ship crews to support smooth operations. An auxiliary aircraft that can produce fresh water on board is required to reduce operational costs, namely the Fresh Water Generator (FWG). This research aims to develop an FWG performance monitoring system to optimize freshwater production. The research model used is a prototype with design, modeling, and prototype formation stages. The system uses an Arduino Mega 2560 microcontroller to process data from temperature, pressure, and TDS sensors, which are then sent via the LoRa transmitter and received by the LoRa receiver. The data is processed by the ESP 32 microcontroller and displayed on the LCD. In real-time, it monitors critical parameters such as heater temperature, filter quality, and freshwater quality, enabling rapid problem detection and timely corrective action. The findings show that the FWG performance monitoring tool can optimize freshwater production; based on the test results, it can operate stably at a pressure of 0.44 bar and a maximum temperature of 84°C and can work reliably under extreme conditions, making the FWG more efficient in producing freshwater.
References
Amrullah, R.A. & Utami, P.E. (2023). Pencegahan Terjadinya Selisih Jumlah Muatan Bahan Bakar Pada Saat Bunker Kapal Republik Indonesia (KRI) Di PT Pertamina Trans Kontinental Surabaya. Prosiding Seminar Nasional Inovasi Pendidikan Maritim 2022, 199-213.
Anantama, A., Apriyantina, A., Samsugi, S., & Rossi, F. (2020). Alat Pantau Jumlah Pemakaian Daya Listrik Pada Alat Elektronik Berbasis Arduino Uno. Jurnal Teknologi Dan Sistem Tertanam, 1(1), 29-34. https://doi.org/10.33365/jtst.v1i1.712
Hartanto, H., Tjahjono, A., Wahyuni, O., & Wibowo, E. (2020). Factors affecting the performance of fresh water generator in merchant vessel. TEM Journal, 9(1), 19-24. https://doi.org/10.18421/TEM91-03
Iswansyah, I., Sirman, M., & Ma’arif, S. (2022). Analisis Menurunnya Produksi Air Tawar Pada Fresh Water Generator Di Kapal MT. Bull Kalimantan. Jurnal Venus, 9(2), 110-116. https://doi.org/10.48192/vns.v9i02.442
Jin, J. G., & Wang, Z. T. (2014). Design of simulating control system on fresh water generator. Advanced Materials Research, 1008–1009, 1154-1159. https://doi.org/10.4028/www.scientific.net/AMR.1008-1009.1154
Joshi, V. P., Joshi, V. S., Kothari, H. A., Mahajan, M. D., Chaudhari, M. B., & Sant, K. D. (2017). Experimental Investigations on a Portable Fresh Water Generator Using a Thermoelectric Cooler. Energy Procedia, 109, 161-166. https://doi.org/10.1016/j.egypro.2017.03.085
Kralj, P., Martinović, D., & Tudor, M. (2017). Analysis of thermodynamic and technological basics of the marine fresh water generator model. Desalination and Water Treatment, 95, 180-185. https://doi.org/10.5004/dwt.2017.21522
Lantang, M. (2017). Analisis Ketidak Optimalnya Kerja Evaporator Terhadap Menurunnya Kinerja Fresh Water Generator Di Kapal Kmp Shalem. ILTEK: Jurnal Teknologi, 12(02), 1815-1820. https://doi.org/10.47398/iltek.v12i02.392
Muhammed, H. Q., Khalifa, M. Z., & Owaid, A. J. (2021). Fresh Water Generator: A Review. Journal of Physics: Conference Series, 1973(1), 1-16. https://doi.org/10.1088/1742-6596/1973/1/012029
Rachman, N. F., Darmawan, A., & Imami, F. D. (2019). Desain Penguncian Pintu Perlintasan Sebidang Jenis Manual Operation PLN-Power Menggunakan Elektromagnet. Jurnal Perkeretaapian Indonesia, 3(23), 30-39. https://doi.org/10.37367/jpi.v3i1.71
Rachman, N. F., Sunardi, Aghastya, A., Wirawan, W. A., & Putri, N. D. O. (2023). Simulation of early warning system in landslides and flooding with IoT. AIP Conference Proceedings, 2592, 6008-6018. https://doi.org/10.1063/5.0114918
Rohmanu, ajar, & Widiyanto, D. (2018). Sistem Sensor Jarak Aman Pada Mobil Berbasis Mikrokontroller Arduino Atmega328. Jurnal Informatika SIMANTIK, 3(1), 7-14.
Shimizu, K. (2021). Energy-saving Fresh Water Generator That Uses Exhaust Heat from Low Emission Diesel Engine. Marine Engineering, 56(2), 176-179. https://doi.org/10.5988/jime.56.176
Sirman, M. & Syahrisal. (2023). Analisis Menurunnya Produksi Air Tawar Pada Fresh Water Generator Di Kapal MT. Gloria Sentosa. JURNAL VENUS, 11(1), 37-48. https://doi.org/10.48192/vns.v11i1.690
Syahwil, M. (2013). Panduan Mudah Simulasi & Praktek Mikrokontroler Arduino. Yogyakarta: Andi.
Vinola, F., & Rakhman, A. (2020). Sistem Monitoring dan Controlling Suhu Ruangan Berbasis Internet of Things. Jurnal Teknik Elektro Dan Komputer, 9(2), 117-126.
Yuksel, O., Gulmez, Y., Konur, O., Korkmaz, S. A., Erdogan, A., & Colpan, C. O. (2019). Performance assessment of a marine freshwater generator through exergetic optimization. Journal of Cleaner Production, 219,326-335. https://doi.org/10.1016/j.jclepro.2019.02.083
Yunior, Y. T. K., & Kusrini, K. (2021). Sistem Monitoring Kualitas Air Pada Budidaya Perikanan Berbasis IoT dan Manajemen Data. Creative Information Technology Journal, 6(2), 153-164. https://doi.org/10.24076/citec.2019v6i2.251
Zamora, R., Harmadi, H., & Wildian, W. (2016). Perancangan Alat Ukur TDS (Total Dissolved Solid) Air Dengan Sensor Konduktivitas Secara Real Time. Sainstek: Jurnal Sains Dan Teknologi, 7(1), 11-15. https://doi.org/10.31958/js.v7i1.120
Zulkarnaen, D., Budiman, F., & Prihatiningrum, N. (2021). Sistem Monitoring Keadaan Air Berbasis Internet of Things (Iot). E-Proceeding of Enginering, 8(2), 1-10,
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Edi Kurniawan, Sonhaji Sonhaji, Bayu Rahmiyarto Ar-Ridho
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.