Sistem Klasifikasi Strata Kelas Peserta Kursus berbasis web menggunakan algoritma K-Means

Authors

  • Vivi Maulida Program Studi Sistem Informasi, Universitas Royal
  • Neni Mulyani Program Studi Sistem Informasi, Universitas Royal
  • Mustika Fitri Larasati Sibuea Program Studi Sistem Informasi, Universitas Royal

DOI:

https://doi.org/10.29408/edumatic.v8i2.27311

Keywords:

classification, data mining, information system, k-means algorithm

Abstract

The increasing number of participants in online courses has driven the development of effective systems to manage and classify their data. The objective of this research is to develop a web-based class strata classification system for course participants using the K-Means algorithm. This research is developmental in nature, employing the waterfall model. We implemented this model through the stages of analysis, design, implementation, and testing. The data used were course participants from the Lembaga Swadaya Training Centre from 2013 to 2024. The system testing we developed utilized the black box method. The K-Means algorithm was chosen for its ability to cluster data without supervision, which is suitable for processing large and heterogeneous data from course participants. The data analysis results show that there are 2 clusters of class strata data: elementary, university, and general (C1) and junior high and high school (C2). Furthermore, our findings also include a web-based classification system integrated with the K-Means algorithm. System testing also showed that the system functions as intended according to the design and requirements analysis. This system can assist relevant parties in making decisions for promoting the market share of course participants.

References

Amri, Z., Kusrini, & Kusnawi. (2023). Prediksi Tingkat Kelulusan Mahasiswa menggunakan Algoritma Naïve Bayes, Decision Tree, ANN, KNN, dan SVM. Edumatic: Jurnal Pendidikan Informatika, 7(2), 187–196. https://doi.org/10.29408/edumatic.v7i2.18620

Ashari, I. A., Negara, I. S. M., & Sumantri, R. B. B. (2022). Evaluasi Pembayaran Keuangan Siswa berdasarkan Penghasilan Wali Siswa menggunakan Metode Clustering K-Means. Edumatic: Jurnal Pendidikan Informatika, 6(2), 324–333. https://doi.org/10.29408/edumatic.v6i2.6395

Bigdeli, A., Maghsoudi, A., & Ghezelbash, R. (2022). Application of self-organizing map (SOM) and K-means clustering algorithms for portraying geochemical anomaly patterns in Moalleman district, NE Iran. Journal of Geochemical Exploration, 233, 106923. https://doi.org/10.1016/j.gexplo.2021.106923

Cai, W., Zhao, J., & Zhu, M. (2020). A real time methodology of cluster-system theory-based reliability estimation using k-means clustering. Reliability Engineering & System Safety, 202, 107045. https://doi.org/10.1016/j.ress.2020.107045

Gligorea, I., Cioca, M., Oancea, R., Gorski, A.-T., Gorski, H., & Tudorache, P. (2023). Adaptive learning using artificial intelligence in e-learning: a literature review. Education Sciences, 13(12), 1216. https://doi.org/10.3390/educsci13121216

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/j.ins.2022.11.139

Naoui, M. A., Lejdel, B., & Ayad, M. (2020). Using K-means algorithm for regression curve in big data system for business environment. Revista Cubana de Ciencias Informáticas, 14(2), 34–48.

Nuranti, M., Aini, M. N., & Enri, U. (2021). Komparasi Distance Measure Pada K-Medoids Clustering untuk Pengelompokkan Penyakit Ispa. Edumatic: Jurnal Pendidikan Informatika, 5(1), 99–107. https://doi.org/10.29408/edumatic.v5i1.3359

Okoye, K. (2021). Educational Workflow Model for Effective and Quality Management of E-Learning Systems Design and Development: A Conceptual Framework. International Conference on Innovations in Bio-Inspired Computing and Applications, 475–490.

Pramadhana, D. (2021). Klasifikasi Penyakit Diabetes Menggunakan Metode CFS Dan ROS dengan Algoritma J48 Berbasis Adaboost. Edumatic: Jurnal Pendidikan Informatika, 5(1), 89–98. https://doi.org/10.29408/edumatic.v5i1.3336

Sintiawati, N., Fajarwati, S. R., Mulyanto, A., Muttaqien, K., & Suherman, M. (2022). Partisipasi civitas akademik dalam implementasi merdeka belajar kampus merdeka (MBKM). Jurnal Basicedu, 6(1), 902–915. https://doi.org/10.31004/basicedu.v6i1.2036

Syaadah, R., Ary, M. H. A. A., Silitonga, N., & Rangkuty, S. F. (2022). Pendidikan formal, Pendidikan non formal Dan Pendidikan informal. PEMA (Jurnal Pendidikan Dan Pengabdian Kepada Masyarakat), 2(2), 125–131. https://doi.org/10.56832/pema.v2i2.298

Syahputra, U. (2021). Dampak Handphone Terhadap Anak-Anak di SDN Desa Paluh Kurau. Jurnal Ilmiah Mahasiswa Stkip Al Maksum, 2(1), 36–43.

Tabianan, K., Velu, S., & Ravi, V. (2022). K-means clustering approach for intelligent customer segmentation using customer purchase behavior data. Sustainability, 14(12), 7243. https://doi.org/10.3390/su14127243

Tahir, S., Hafeez, Y., Abbas, M. A., Nawaz, A., & Hamid, B. (2022). Smart learning objects retrieval for E-Learning with contextual recommendation based on collaborative filtering. Education and Information Technologies, 27(6), 8631–8668. https://doi.org/10.1007/s10639-022-10966-0

Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Penjualan Bisnis Ritel. Edumatic: Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081

Uska, M., Wirasasmita, R., Usuluddin, U., & Arianti, B. (2020). Evaluation of Rapidminer-Aplication in Data Mining Learning using PeRSIVA Model. Edumatic: Jurnal Pendidikan Informatika, 4(2), 164–171. https://doi.org/10.29408/edumatic.v4i2.2688

Vankayalapati, R., Ghutugade, K. B., Vannapuram, R., & Prasanna, B. P. S. (2021). K-Means algorithm for clustering of learners performance levels using machine learning techniques. Rev. d’Intelligence Artif., 35(1), 99–104. https://doi.org/10.18280/ria.350112

Wiryany, D., Natasha, S., & Kurniawan, R. (2022). Perkembangan Teknologi Informasi dan Komunikasi terhadap Perubahan Sistem Komunikasi Indonesia. Jurnal Nomosleca, 8(2), 242–252. https://doi.org/10.26905/nomosleca.v8i2.8821

Yusra, Z., Zulkarnain, R., & Sofino, S. (2021). Pengelolaan Lkp Pada Masa Pendmik Covid-19. Journal Of Lifelong Learning, 4(1), 15–22. https://doi.org/10.33369/joll.4.1.15-22

Zaifullah, Z., Cikka, H., Kahar, M. I., Ismail, M. J., & Iskadar, I. (2023). Peran Pusat Kegiatan Belajar Masyarakat (PKBM) Dalam Penyelenggaraan Pendidikan Nonformal di Era Society 5.0. Innovative: Journal Of Social Science Research, 3(2), 14539–14549. https://doi.org/10.31004/innovative.v3i2.2089

Downloads

Published

2024-12-19

How to Cite

Maulida, V., Mulyani, N., & Sibuea, M. F. L. (2024). Sistem Klasifikasi Strata Kelas Peserta Kursus berbasis web menggunakan algoritma K-Means. Edumatic: Jurnal Pendidikan Informatika, 8(2), 477–486. https://doi.org/10.29408/edumatic.v8i2.27311