Sistem Klasifikasi Strata Kelas Peserta Kursus berbasis web menggunakan algoritma K-Means
DOI:
https://doi.org/10.29408/edumatic.v8i2.27311Keywords:
classification, data mining, information system, k-means algorithmAbstract
The increasing number of participants in online courses has driven the development of effective systems to manage and classify their data. The objective of this research is to develop a web-based class strata classification system for course participants using the K-Means algorithm. This research is developmental in nature, employing the waterfall model. We implemented this model through the stages of analysis, design, implementation, and testing. The data used were course participants from the Lembaga Swadaya Training Centre from 2013 to 2024. The system testing we developed utilized the black box method. The K-Means algorithm was chosen for its ability to cluster data without supervision, which is suitable for processing large and heterogeneous data from course participants. The data analysis results show that there are 2 clusters of class strata data: elementary, university, and general (C1) and junior high and high school (C2). Furthermore, our findings also include a web-based classification system integrated with the K-Means algorithm. System testing also showed that the system functions as intended according to the design and requirements analysis. This system can assist relevant parties in making decisions for promoting the market share of course participants.
References
Amri, Z., Kusrini, & Kusnawi. (2023). Prediksi Tingkat Kelulusan Mahasiswa menggunakan Algoritma Naïve Bayes, Decision Tree, ANN, KNN, dan SVM. Edumatic: Jurnal Pendidikan Informatika, 7(2), 187–196. https://doi.org/10.29408/edumatic.v7i2.18620
Ashari, I. A., Negara, I. S. M., & Sumantri, R. B. B. (2022). Evaluasi Pembayaran Keuangan Siswa berdasarkan Penghasilan Wali Siswa menggunakan Metode Clustering K-Means. Edumatic: Jurnal Pendidikan Informatika, 6(2), 324–333. https://doi.org/10.29408/edumatic.v6i2.6395
Bigdeli, A., Maghsoudi, A., & Ghezelbash, R. (2022). Application of self-organizing map (SOM) and K-means clustering algorithms for portraying geochemical anomaly patterns in Moalleman district, NE Iran. Journal of Geochemical Exploration, 233, 106923. https://doi.org/10.1016/j.gexplo.2021.106923
Cai, W., Zhao, J., & Zhu, M. (2020). A real time methodology of cluster-system theory-based reliability estimation using k-means clustering. Reliability Engineering & System Safety, 202, 107045. https://doi.org/10.1016/j.ress.2020.107045
Gligorea, I., Cioca, M., Oancea, R., Gorski, A.-T., Gorski, H., & Tudorache, P. (2023). Adaptive learning using artificial intelligence in e-learning: a literature review. Education Sciences, 13(12), 1216. https://doi.org/10.3390/educsci13121216
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/j.ins.2022.11.139
Naoui, M. A., Lejdel, B., & Ayad, M. (2020). Using K-means algorithm for regression curve in big data system for business environment. Revista Cubana de Ciencias Informáticas, 14(2), 34–48.
Nuranti, M., Aini, M. N., & Enri, U. (2021). Komparasi Distance Measure Pada K-Medoids Clustering untuk Pengelompokkan Penyakit Ispa. Edumatic: Jurnal Pendidikan Informatika, 5(1), 99–107. https://doi.org/10.29408/edumatic.v5i1.3359
Okoye, K. (2021). Educational Workflow Model for Effective and Quality Management of E-Learning Systems Design and Development: A Conceptual Framework. International Conference on Innovations in Bio-Inspired Computing and Applications, 475–490.
Pramadhana, D. (2021). Klasifikasi Penyakit Diabetes Menggunakan Metode CFS Dan ROS dengan Algoritma J48 Berbasis Adaboost. Edumatic: Jurnal Pendidikan Informatika, 5(1), 89–98. https://doi.org/10.29408/edumatic.v5i1.3336
Sintiawati, N., Fajarwati, S. R., Mulyanto, A., Muttaqien, K., & Suherman, M. (2022). Partisipasi civitas akademik dalam implementasi merdeka belajar kampus merdeka (MBKM). Jurnal Basicedu, 6(1), 902–915. https://doi.org/10.31004/basicedu.v6i1.2036
Syaadah, R., Ary, M. H. A. A., Silitonga, N., & Rangkuty, S. F. (2022). Pendidikan formal, Pendidikan non formal Dan Pendidikan informal. PEMA (Jurnal Pendidikan Dan Pengabdian Kepada Masyarakat), 2(2), 125–131. https://doi.org/10.56832/pema.v2i2.298
Syahputra, U. (2021). Dampak Handphone Terhadap Anak-Anak di SDN Desa Paluh Kurau. Jurnal Ilmiah Mahasiswa Stkip Al Maksum, 2(1), 36–43.
Tabianan, K., Velu, S., & Ravi, V. (2022). K-means clustering approach for intelligent customer segmentation using customer purchase behavior data. Sustainability, 14(12), 7243. https://doi.org/10.3390/su14127243
Tahir, S., Hafeez, Y., Abbas, M. A., Nawaz, A., & Hamid, B. (2022). Smart learning objects retrieval for E-Learning with contextual recommendation based on collaborative filtering. Education and Information Technologies, 27(6), 8631–8668. https://doi.org/10.1007/s10639-022-10966-0
Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Penjualan Bisnis Ritel. Edumatic: Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081
Uska, M., Wirasasmita, R., Usuluddin, U., & Arianti, B. (2020). Evaluation of Rapidminer-Aplication in Data Mining Learning using PeRSIVA Model. Edumatic: Jurnal Pendidikan Informatika, 4(2), 164–171. https://doi.org/10.29408/edumatic.v4i2.2688
Vankayalapati, R., Ghutugade, K. B., Vannapuram, R., & Prasanna, B. P. S. (2021). K-Means algorithm for clustering of learners performance levels using machine learning techniques. Rev. d’Intelligence Artif., 35(1), 99–104. https://doi.org/10.18280/ria.350112
Wiryany, D., Natasha, S., & Kurniawan, R. (2022). Perkembangan Teknologi Informasi dan Komunikasi terhadap Perubahan Sistem Komunikasi Indonesia. Jurnal Nomosleca, 8(2), 242–252. https://doi.org/10.26905/nomosleca.v8i2.8821
Yusra, Z., Zulkarnain, R., & Sofino, S. (2021). Pengelolaan Lkp Pada Masa Pendmik Covid-19. Journal Of Lifelong Learning, 4(1), 15–22. https://doi.org/10.33369/joll.4.1.15-22
Zaifullah, Z., Cikka, H., Kahar, M. I., Ismail, M. J., & Iskadar, I. (2023). Peran Pusat Kegiatan Belajar Masyarakat (PKBM) Dalam Penyelenggaraan Pendidikan Nonformal di Era Society 5.0. Innovative: Journal Of Social Science Research, 3(2), 14539–14549. https://doi.org/10.31004/innovative.v3i2.2089
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vivi Maulida, Neni Mulyani, Mustika Fitri Larasati Sibuea
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.