Pemetaan Kasus DBD di Pulau Lombok menggunakan Regresi Binomial Negatif berbasis Geografis

Authors

  • Dita Septiana Ayundasari Program Studi Statistika, Universitas Hamzanwadi
  • Siti Hariati Hastuti Program Studi Statistika, Universitas Hamzanwadi
  • Kertanah Kertanah Program Studi Statistika, Universitas Hamzanwadi

DOI:

https://doi.org/10.29408/edumatic.v8i2.27460

Keywords:

dhf, gwnbr, ratio of medical personnel, proper sanitation facilities, drinking water facilities according to standard

Abstract

According to the Indonesia Health Profile Report 2022, NTB Province is among the 11 provinces with the highest incidence rate of dengue hemorrhagic fever (DHF). On Lombok Island, there were 2,074 cases with 4 deaths in 2022. DHF remains a serious threat in Lombok, so this study aims to map sub-districts based on significant factors for the spread of DHF in 54 sub-districts throughout Lombok Island. This study used quantitative analysis with one response variable, the number of DHF cases, and three predictor variables: the ratio of medical personnel (nurses) (X1), the percentage of proper sanitation facilities (healthy latrines) (X2) and the percentage of standard drinking water facilities (X3) in 54 sub-districts. Data were obtained from the Health Office throughout Lombok Island. Analysis techniques include descriptive analysis, GWNBR modeling, and significant variable mapping. The mapping results showed six groups of sub-districts with a combination of significant variables, which included variables X1, X2, and X3. The findings suggest the need for additional studies or prevention policies that are more focused on hygiene to reduce the risk of DHF spread. Related parties also need to be informed to take strategic steps based on these findings.

References

Al Azies, H. (2019). Analisis Pengaruh Fasilitas Kesehatan terhadap Kematian Bayi di Jawa Timur Menggunakan Pendekatan Geographically Weighted Regression. Jurnal Penelitian Dan Pengembangan Pelayanan Kesehatan, 131–141. https://doi.org/10.22435/jpppk.v3i2.2431

Ardifasalma, S., & Azmi, U. (2023). Pemodelan Kasus Covid-19 di Jawa Timur Menggunakan Metode Generalized Poisson Regression dan Negative Binomial Regression. Jurnal Sains Dan Seni ITS, 11(6), D383–D389. https://doi.org/10.12962/j23373520.v11i6.91211

Azizah, A. H. (2021). Pemodelan Geographically Weighted Panel Regression Dengan Fungsi Pembobot Adaptive Kernel (Studi Kasus Indeks Pembangunan Manusia Di Indonesia Tahun 2013–2020) (Doctoral dissertation, Universitas Brawijaya).

Baitanu, J. Z., Masihin, L., Rustan, L. D., Siregar, D., & Aiba, S. (2022). Hubungan Antara Usia, Jenis Kelamin, Mobilitas, Dan Pengetahuan Dengan Kejadian Demam Berdarah Dengue Di Wulauan, Kabupaten Minahasa. Malahayati Nursing Journal, 4(5), 1230–1241. https://doi.org/10.33024/mnj.v4i5.6348

Chaniago, A. D., & Wulandari, S. P. (2023). Pemodelan Generalized Poisson Regression (GPR) dan Negative Binomial Regression (NBR) untuk Mengatasi Overdispersi pada Jumlah Kematian Bayi di Kabupaten Probolinggo. Jurnal Sains Dan Seni ITS, 11(6), D448–D455. https://doi.org/10.12962/j23373520.v11i6.93240

Darsyah, M. Y. (2021). Pemodelan Geographically Weighted Negative Binomial Regression (GWNBR) Pada Kasus Malaria di Indonesia. Jurnal Litbang Edusaintech, 2(2), 149–164.

Dompas, B. E., Sumampouw, O. J., & Umboh, J. M. L. (2020). Apakah Faktor Lingkungan Fisik Rumah Berhubungan dengan Kejadian Demam Berdarah Dengue? Indonesian Journal of Public Health and Community Medicine, 1(2), 11–15.

Eminita, V., Kurnia, A., & Sadik, K. (2019). Penanganan overdispersi pada pemodelan data cacah dengan respon nol berlebih (zero-inflated). Fibonacci: Jurnal Pendidikan Matematika Dan Matematika, 5(1), 71–80. https://doi.org/10.24853/fbc.5.1.71-80

Fatmala, C. T., Hayati, M., Permatasari, R., Hudori, M., & Dalimunthe, D. Y. (2024). Pemodelan Jumlah Kasus HIV/AIDS di Provinsi Lampung Menggunakan Regresi Binomial Negatif. Journal of Mathematics: Theory and Applications, 6(2), 168-177. https://doi.org/10.31605/jomta.v6i2.4069

Haryanto, A. E. P., & Wibowo, W. (2022). Pemodelan Faktor-faktor yang Memengaruhi Jumlah Pengangguran di Indonesia Menggunakan Metode Generalized Poisson Regression dan Negative Binomial Regression. Jurnal Ketenagakerjaan, 17(2), 174-186. https://doi.org/10.47198/naker.v17i2.132

Maghrifoh, W. (2019). Perbandingan Fungsi Pembobot pada Model Geographically Weighted Negative Binomial Regression (GWNBR) dalam kasus Demam Berdarah Dengue (DBD) di Kota Mojokerto. Surabaya: Skripsi Program Sarjana, Program Studi Matematika, Universitas Islam Negeri Sunan Ampel. https://core.ac.uk/download/pdf/224825046.pdf

Pasokawati, T. (2019). Pemodelan Geographically Weighted Negative Binomial Regression Pada Kasus HIV di Provinsi Jawa Timur (Doctoral dissertation, Muhammadiyah University, Semarang).

Purnama, D. I. (2021). Comparison of Zero Inflated Poisson (ZIP) Regression, Zero Inflated Negative Binomial Regression (ZINB) and Binomial Negative Hurdle Regression (HNB) to Model Daily Cigarette Consumption Data for Adult Population in Indonesia. Jurnal Matematika, Statistika Dan Komputasi, 17(3), 357–369. https://doi.org/10.20956/j.v17i3.12278

Putri, D. R., Fathurahman, M., & Suyitno, S. (2024). Pemodelan Jumlah Kasus Tuberkulosis Paru di Indonesia dengan Geographically Weighted Negative Binomial Regression. EKSPONENSIAL, 15(1), 49-61. https://doi.org/10.30872/eksponensial.v15i1.1303

Ramadhan, R. F., & Kurniawan, R. (2016). Pemodelan Data Kematian Bayi dengan Geographically Weighted Negative Binomial Regression. Media Statistika, 9(2), 95–106. https://doi.org/10.14710/medstat.9.2.95-106

Rini, D. S. (2018). Geographically Weighted Negative Binomial Regression untuk Jumlah Kasus Demam Berdarah Dengue Kabupaten/Kota Provinsi Bengkulu. PRISMA, Prosiding Seminar Nasional Matematika, 1, 736–744.

Sofyan, W. (2020). Pemodelan Angka Kematian Bayi Di Provinsi Jawa Barat Menggunakan Metode Regresi Poisson Inverse Gaussian (PIG) (Doctoral dissertation, Muhammadiyah University, Semarang).

Suryadi, F., Jonathan, S., Jonatan, K., & Ohyver, M. (2023). Handling overdispersion in poisson regression using negative binomial regression for poverty case in west java. Procedia Computer Science, 216, 517-523. https://doi.org/10.1016/j.procs.2022.12.164

Suryani, I., Yasin, H., & Kartikasari, P. (2021). Pemodelan jumlah kasus demam berdarah dengue (dbd) di jawa tengah dengan geographically weighted negative binomial regression (gwnbr). Jurnal Gaussian, 10(1), 136–148. https://doi.org/10.14710/j.gauss.v10i1.29400

Syafiqoh, A. J., Mahardika, R., Amaria, S., Winaryati, E., & Al Haris, M. (2024). Pemodelan Regresi Binomial Negatif untuk Mengevaluasi Faktor-faktor yang Mempengaruhi Kasus Tuberkulosis di Provinsi Jawa Barat. Jurnal MSA (Matematika dan Statistika serta Aplikasinya), 12(1), 15-23.

Ustiawaty, J., Pertiwi, A. D., & Aini, A. (2020). Upaya Pencegahan Penyakit Demam Berdarah Melalui Pemberantasan Nyamuk Aedes aegypti. Jurnal Pengabdian Magister Pendidikan IPA, 3(2), 200-204. https://doi.org/10.29303/jpmpi.v3i2.528

Downloads

Published

2024-12-19

How to Cite

Ayundasari, D. S., Hastuti, S. H., & Kertanah, K. (2024). Pemetaan Kasus DBD di Pulau Lombok menggunakan Regresi Binomial Negatif berbasis Geografis. Edumatic: Jurnal Pendidikan Informatika, 8(2), 497–506. https://doi.org/10.29408/edumatic.v8i2.27460