Klasifikasi Stunting pada Balita menggunakan Algortima Gradient Bossting Clasifier

Authors

  • Daffa Maulana Azhari Program Studi Teknik Informatika, Universitas Dian Nuswantoro https://orcid.org/0009-0002-2886-7864
  • Moch Sjamsul Hidajat Program Studi Teknik Informatika, Universitas Dian Nuswantoro

DOI:

https://doi.org/10.29408/edumatic.v8i2.27502

Keywords:

artificial intelegent, gradient boost classifier, health, machine learning, stunting

Abstract

Stunting is a significant public health problem, impacting the physical and cognitive growth and development of children under five. In Indonesia, stunting is a major issue caused by a lack of nutritional intake since birth, including in the city of Semarang. This study aims to compare the performance of K-Nearest Neighbor (KNN), Naïve Bayes, and Gradient Boosting Classifier algorithms in classifying stunting in toddlers, to find the best model. The data used is quantitative data from posyandu, consisting of 1288 samples with variables including Name, Gender, Age, Date of Birth, Parent's Name, Village, Rt, RW, weight, height, arm circumference, and Z-score. After data collection, a data preprocessing process is carried out to clean and prepare the data. The data was divided into training and test data with a ratio of 80:20, 70:30, and 60:40, which were then trained and tested using the three algorithms. The best model was further evaluated with K-Fold Cross Validation to assess the stability and generalizability of the predictions. Model evaluation uses accuracy, precision, recall and F1-Score metrics. The results showed that Gradient Boosting Classifier gave the best performance with 99.92% accuracy, 99.92% precision, 99.92% recall, and 99.92% F1-score. This study concludes that the Gradient Boosting Classifier is the most optimal model in the classification of stunting in toddlers, giving the best precision results.

References

Ahsan, M. M., Mahmud, M. A., Saha, P., Gupta, K. D., & Siddique, Z. (2021). Effect of data scaling methods on machine learning algorithms and model performance. Technologies, 9(3), 52. https://doi.org/10.3390/technologies9030052

Ali, I., Kurnia, D. A., Pratama, M. A., & Ma’ruf, F. A. (2021). Klasifikasi status stunting balita di desa Slangit menggunakan metode K-Nearest Neighbor. KOPERTIP Science Journal of Information Management and Computer, 5(1), 35–39. https://doi.org/10.51211/itbi.v5i1.1431

Darnis, S. (2022). Penyebab dan risiko stunting: Implikasi terhadap pendidikan anak usia dini. Nusantara Journal of Pendidikan Indonesia, 2(2), 343–356. https://doi.org/10.14421/njpi.2022.v2i2-8

Eina, M. F., Chrisnanto, Y. H., & Melina, M. (2024). Klasifikasi telemarketing menggunakan Naïve Bayes classification dan wrapper sequential feature selection. INTECOMS Journal of Information Technology and Computer Science, 7(4), 1189–1198. https://doi.org/10.31539/intecoms.v7i4.10846

Fikri, M. (2024). Klasifikasi status stunting pada anak bawah lima tahun menggunakan extreme gradient boosting. Merkurius Journal of Information Systems and Information Technology Research, 2(4), 173–184. https://doi.org/10.61132/merkurius.v2i4.159

Finda, S. M., & Utomo, D. W. (2024). Klasifikasi stunting balita menggunakan metode ensemble learning dan random forest. Infotekmesin, 15(2), 287–295.

Lonang, S., & Normawati, D. (2022). Klasifikasi status stunting pada balita menggunakan K-Nearest Neighbor dengan feature selection backward elimination. Journal of Media Informasi Budidarma, 6(1), 49–56. https://doi.org/10.30865/mib.v6i1.3312

Maulina, M., Wijaya, M. Y., & Fitriyati, N. (2024). Perbandingan metode backward dan forward pada seleksi mixed-effects model: Analisis fragile state index Asia Tenggara. Jurnal Lebesgue Ilmiah Pendidikan Matematika dan Statistika, 5(1), 62–74. https://doi.org/10.46306/lb.v5i1.495

Mulyanto, Y., Idifitriani, F., & Wati, A. (2024). Klasifikasi data mining untuk penentuan stunting pada balita menggunakan metode Naïve Bayes. Jurnal Mnemonik, 7(2), 129–135. https://doi.org/10.36040/mnemonic.v7i2.8849

Prasetyo, E., & Nugroho, K. (2024). Optimasi klasifikasi data stunting melalui ensemble learning pada label multiclass dengan imbalance data. Techno Com, 23(2), 1-10.

Rozaq, A., & Purnomo, A. J. (2022). Classification of stunting status in toddlers using Naive Bayes method in the city of Madiun based on website. Jurnal Techno Nusa Mandiri, 19(2), 69–76. https://doi.org/10.33480/techno.v19i2.3337

Sa’adah, A., Astuti, F. W., Masithah, M. D., Ovikariani, Kirana, D. A., Exma, S., Amalia, D. A., & Putriana, M. A. (2024). Pencegahan stunting di Posyandu RW 010 Kelurahan Krobokan Kota Semarang. Jurnal Pengabdian IKIFA, 3(1), 16–21.

Sari, D., Ningsih, A. D., & Azzahra, A. (2023). Pencegahan stunting pada anak usia dini serta dampaknya pada faktor pendidikan dan ekonomi. Jurnal Pengabdian kepada Masyarakat Nusantara, 4(3), 2679–2678.

Setianto, W., Ilyas, A., Setiawan, T. A., Budijanto, H. A., & Binabar, S. W. (2023). Klasifikasi stunting dengan KNN di kota Pekalongan berbasis sistem informasi geografis. Jurnal Ilmiah Intech Information Technology Journal UMUS, 5(2), 170–178.

Siahaan, M. F., Rahmatika, A., & Nadhiroh, S. R. (2023). Tinjauan literatur: Intervensi suplemen makanan untuk meningkatkan Z-Skor PB/U pada balita stunting. Amerta Nutrition, 7(1), 154–160. https://doi.org/10.20473/amnt.v7i1.2023.154-160

Titimeidara, M. Y., & Hadikurniawati, W. (2021). Implementasi metode Naïve Bayes classifier untuk klasifikasi status gizi stunting pada balita. Jurnal Ilmiah Informatika, 9(1), 54–59. https://doi.org/10.33884/jif.v9i01.3741

Wahyudi, R., Orisa, M., & Vendyansyah, N. (2021). Penerapan algoritma K-Nearest Neighbors pada klasifikasi penentuan gizi balita (Studi kasus di Posyandu desa Bluto). JATI Journal of Mahasiswa Teknik Informatika, 5(2), 750–757. https://doi.org/10.36040/jati.v5i2.3738

Wahyudin, W. C. (2020). Klasifikasi stunting balita menggunakan Naïve Bayes dengan seleksi fitur forward selection. Jurnal Ilmu Komputer dan Matematika, 1(1), 71–74. https://ejr.umku.ac.id/index.php/jikoma/article/view/1220

Yacouby, R., & Axman, D. (2020). Probabilistic extension of precision, recall, and F1 score for more thorough evaluation of classification models. Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, 1(1), 79–91. https://doi.org/10.18653/v1/2020.eval4nlp-1.9

Yahya, M. (2022). Algoritma K-Means untuk klasifikasi provinsi di Indonesia berdasarkan paket pelayanan stunting. Panrita Journal of Science, Technology and Arts, 1(2), 41–46.

Downloads

Published

2024-12-19