Deteksi Dini Cacar Monyet menggunakan Convolutional Neural Network (CNN) dalam Aplikasi Mobile
DOI:
https://doi.org/10.29408/edumatic.v8i2.27625Keywords:
deep learning, early detection, health app, image classification, monkey poxAbstract
Monkeypox is a skin infection that has become a serious concern in Indonesia since the increase in cases in 2022. Diagnosis of monkeypox requires special expertise, laboratory tests, and clinical observations. Diagnosis generally uses PCR tests which are often not available in remote areas. This study aims to develop a deep learning-based mobile application for early detection of monkeypox through image classification of skin lesions. The CRISP-DM methodology is applied in developing this application, starting with collecting datasets from the Kaggle site consisting of 8,910 images and divided into 80% training groups, 10% validation, and 10% testing with augmentation techniques to improve model accuracy. The developed CNN model was implemented using Create ML on the iOS platform. The model evaluation uses several metrics such as accuracy, precision, recall, and F1 score, with the threshold being the highest probability of the model predicting model evaluation results show an accuracy of 81%, precision of 80.2%, recall of 76%, and F1 score of 0.78 for the test data. The resulting application allows rapid detection of monkeypox and is accessible to the wider community, thereby helping to reduce delays in diagnosis, especially in hard-to-reach areas. This study shows significant potential in supporting the health system in Indonesia through the application of artificial intelligence technology for infectious diseases.
References
Alrusaini, O. A. (2023). Deep Learning Models for the Detection of Monkeypox Skin Lesion on Digital Skin Images. (IJACSA) International Journal of Advanced Computer Science and Applications, 14, 637-644. https://doi.org/10.14569/ijacsa.2023.0140170
Altindis, M., Puca, E., & Shapo, L. (2022). Diagnosis of monkeypox virus–An overview. Travel medicine and infectious disease, 50, 102459. https://doi.org/10.1016/j.tmaid.2022.102459
Altun, M., Gürüler, H., Özkaraca, O., Khan, F., Khan, J., & Lee, Y. (2023). Monkeypox Detection Using CNN with Transfer Learning. Sensors, 23(4). https://doi.org/10.3390/s23041783
Ariansyah, M. H., Winarno, S., & Sani, R. R. (2023). Monkeypox and measles detection using CNN with VGG-16 Transfer Learning. Journal of Computing Research and Innovation, 8(1), 32–44. https://doi.org/10.24191/jcrinn.v8i1.340
Asakura, T. R., Jung, S. M., Jin, S., Hu, G., Endo, A., & Dickens, B. L. (2024). Characterising global risk profiles of Mpox clade Ib importation. Journal of Travel Medicine, taae136. https://doi.org/10.1093/jtm/taae136
Eliwa, E. H. I., El Koshiry, A. M., Abd El-Hafeez, T., & Farghaly, H. M. (2023). Utilizing convolutional neural networks to classify monkeypox skin lesions. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-41545-z
Caloh, G. B. A. (2024). Update Mpox Minggu ke 38 dan ke 39 2024 (15 - 28 September 2024). Infeksi Emerging Kementerian Kesehatan Republik Indonesia. https://infeksiemerging.kemkes.go.id/situasi-mpox/update-mpox-minggu-ke-38-dan-ke-39-2024-15-28-september-2024
Khan, S. A., Parajuli, S. B., & Rauniyar, V. K. (2023). Neurological manifestations of an emerging zoonosis—Human monkeypox virus: A systematic review. Medicine, 102(35), e34664. https://doi.org/10.1097/MD.0000000000034664
Kolla, M., Mishra, R. K., Zahoor Ul Huq, S., Vijayalata, Y., Gopalachari, M. V., & Siddiquee, K. E. A. (2022). CNN-Based Brain Tumor Detection Model Using Local Binary Pattern and Multilayered SVM Classifier. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/9015778
Liu, J., Sun, H., & Katto, J. (2023). Learned image compression with mixed transformer-cnn architectures. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 14388-14397). https://doi.org/10.1109/CVPR52729.2023.01383
Luo, C., He, X., Zhan, J., Wang, L., Gao, W., & Dai, J. (2020). Comparison and Benchmarking of AI Models and Frameworks on Mobile Devices. ArXiv Preprint ArXiv. https://doi.org/10.48550/arXiv.2005.05085
Muñoz-Saavedra, L., Escobar-Linero, E., Civit-Masot, J., Luna-Perejón, F., Civit, A., & Domínguez-Morales, M. (2023). A Robust Ensemble of Convolutional Neural Networks for the Detection of Monkeypox Disease from Skin Images. Sensors, 23(16). https://doi.org/10.3390/s23167134
Parums, D. V. (2024). Reasons for Increasing Global Concerns for the Spread of Mpox. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 30, e946343-1. https://doi.org/10.12659/MSM.946343
Putra, O. V., Mustaqim, M. Z., & Muriatmoko, D. (2023). Transfer Learning untuk Klasifikasi Penyakit dan Hama Padi Menggunakan MobileNetV2. Techno.COM, 22(3), 562–575. https://doi.org/10.33633/tc.v22i3.8516
Salehi, A. W., Khan, S., Gupta, G., Alabduallah, B. I., Almjally, A., Alsolai, H., ... & Mellit, A. (2023). A study of CNN and transfer learning in medical imaging: Advantages, challenges, future scope. Sustainability, 15(7), 5930.
Salehin, I., Islam, M. S., Amin, N., Baten, M. A., Noman, S. M., Saifuzzaman, M., & Yazmyradov, S. (2023). Real-Time Medical Image Classification with ML Framework and Dedicated CNN-LSTM Architecture. Journal of Sensors, 2023. https://doi.org/10.1155/2023/3717035
Sari, M., & Hairunisa, N. (2022). A Review of The Monkeypox Outbreak In Indonesia In 2022. Diponegoro Medical Journal (Jurnal Kedokteran Diponegoro), 11(5), 268–274. https://doi.org/10.14710/dmj.v11i5.35895
Susanti, I. D., Winarno, S., & Zeniarja, J. (2024). Yogyakarta Batik Image Classification Based on Convolutional Neural Network. Advance Sustainable Science, Engineering and Technology, 6(1). https://doi.org/10.26877/asset.v6i1.18002
Ozsahin, D.U., Mustapha, M. T., Uzun, B., Duwa, B., & Ozsahin, I. (2023). Computer-Aided Detection and Classification of Monkeypox and Chickenpox Lesion in Human Subjects Using Deep Learning Framework. Diagnostics, 13(2). https://doi.org/10.3390/diagnostics1302029
Yaacoub, E., Abualsaud, K., Khattab, T., & Chehab, A. (2020). Secure Transmission of IoT mHealth Patient Monitoring Data from Remote Areas Using DTN. IEEE Network, 34(5), 226–231. https://doi.org/10.1109/MNET.011.1900627
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Rifqi Triginandri, Egia Rosi Subhiyakto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.