Perbandingan Kinerja Model Prediksi Cuaca: Random Forest, Support Vector Regression, dan XGBoost

Authors

DOI:

https://doi.org/10.29408/edumatic.v8i2.27640

Keywords:

machine learning, random forest, support vector regression, temperature, xgboost

Abstract

Accurate weather predictions are essential to mitigate the impacts of weather changes and support better planning in sectors such as agriculture, transportation, and tourism. Indonesia often faces unpredictable weather, such as sudden rains and long droughts, which can cause huge losses. This study aims to compare the performance of three machine learning algorithms Random Forest, Support Vector Regression (SVR), and XGBoost in predicting weather using meteorological data (minimum temperature, maximum temperature, rainfall, wind direction, average humidity) as well as IoT data totaling 1650 data per variable. The variables used in this study include minimum temperature, maximum temperature, rainfall, wind direction, and average humidity. Data analysis techniques were performed using three main evaluation metrics, namely Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared (R²). The results showed that XGBoost gave the best performance with MAE 0.3744, MSE 0.2278, and R² 0.8183. Random Forest and SVR also produced good predictions, with MAE values of 0.3869 and 0.3820, MSE 0.2422 and 0.2524, and R² 0.8068 and 0.7987, respectively. The results show XGBoost is the best model for weather prediction, which can help improve accuracy in agricultural planning and weather-related disaster risk mitigation.

References

Ardian, M., Khomsah, S., & Pandiya, R. (2024). Perbandingan Model Regresi Untuk Memprediksi Harga Jual Cabai Rawit Berdasarkan Iklim Harian. Jurnal JUPITER, 16(2), 549–560.

Bala, S. (2021). COVID-19 Outbreak Prediction Analysis Using Machine Learning. International Journal for Research in Applied Science and Engineering Technology, 9(1), 1–7. https://doi.org/10.22214/ijraset.2021.32690

Hadianto, A., & Utomo, W. H. (2024). CatBoost Optimization Using Recursive Feature Elimination. JOIN (Jurnal Online Informatika), 9(2), 169–178. https://doi.org/10.15575/join.v9i1.1324

Himawan, F., Pressa Perdana, & Yoedo Ageng Surya. (2021). Rancang Bangun Purwarupa Smart Garden Menggunakan Kamera, Sensor Suhu Dan Kelembaban Tanah Berbasis Internet Of Things (IOT) Dengan ESP8266. Jurnal JEETech, 2(2), 78–83. https://doi.org/10.48056/jeetech.v2i2.171

Huang, L., Liu, Y., Huang, W., Dong, Y., Ma, H., Wu, K., & Guo, A. (2022). Combining Random Forest And XGBoost Methods In Detecting Early And Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements. Agriculture (Switzerland), 12(1). https://doi.org/10.3390/agriculture12010074

Hutagalung, C. A. H., Rosalind, G. A., Tuhu, D. M. S., & Agustianingsih, A. (2023). Wholesale Inventory Management Optimization: Methodological Approach With XGBoost, SVR, And Random Forest Algorithms. Brilliance: Research of Artificial Intelligence, 3(2), 369–377. https://doi.org/10.47709/brilliance.v3i2.3336

Karim, A. A., Ary Prasetyo, M., & Saputro, M. R. (2023). Perbandingan Metode Random Forest, K-Nearest Neighbor, Dan SVM Dalam Prediksi Akurasi Pertandingan Liga Italia. Prosiding Seminar Nasional Teknologi Dan Sains, 2(7), 377–382.

Kumar, M. S., Srivastava, D. M., & Prakash, D. V. (2024). Advanced Hybrid Prediction Model: Optimizing LightGBM, XGBoost, Lasso Regression, And Random Forest With Bayesian Optimization. Journal of Theoretical and Applied Information Technology, 15(9). 4103-4115.

Li, H., Zhang, G., Zhong, Q., Xing, L., & Du, H. (2023). Prediction of urban forest aboveground carbon using machine learning based on landsat 8 and Sentinel-2: a case study of Shanghai, China. Remote Sensing, 15(1), 284. https://doi.org/10.3390/rs15010284

Muhammady, D. N., Nugraha, H. A. E., Nastiti, V. R. S., Sri, C., & Aditya, K. (2024). Students Final Academic Score Prediction Using Boosting Regression Algorithms. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 10(1), 154-165. https://doi.org/10.26555/jiteki.v10i1.28352

Pamungkas, A. S., & Cahyono, N. (2024). Analisis Sentimen Review ChatGPT Di Play Store menggunakan Support Vector Machine Dan K-Nearest Neighbor. Edumatic: Jurnal Pendidikan Informatika, 8(1), 1–10. https://doi.org/10.29408/edumatic.v8i1.24114

Patasik, E. S., & Yulianto, S. (2023). Classification of Regional Languages Using Methods Gradient Boosts And Random Forest. Jurnal Teknik Informatika (Jutif), 4(5), 1249–1255. https://doi.org/10.52436/1.jutif.2023.4.5.1459

Pebrianti, D., Kurniawan, H., Bayuaji, L., & Rusdah, R. (2023). XgBoost Hyper-Parameter Tuning Using Particle Swarm Optimization For Stock Price Forecasting. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), 9(4), 1179–1195.

Priyatno, A. M., Tanjung, L. S., Ramadhan, W. F., Cholidhazia, P., Jati, P. Z., & Firmananda, F. I. (2023). Comparison Random Forest Regression And Linear Regression For Forecasting BBCA Stock Price. Jurnal Teknik Industri Terintegrasi, 6(3), 718–732. https://doi.org/10.31004/jutin.v6i3.16933

Putri, N. F., Hidayati, R., & Nirmala, I. (2023). Rancang Bangun Sistem Pemantauan Dan Kendali Budidaya Anggur Dengan Penerapan Internet Of Things (IoT) Berbasis Android. Jurnal Riset Komputer, 10(3), 2407–389.

Rakhmat, G. A., & Mutohar, W. (2023). Prakiraan Hujan menggunakan Metode Random Forest dan Cross Validation. MIND (Multimedia Artificial Intelligent Networking Database) Journal, 8(2), 173-187.

Satria, A., Badri, R. M., & Safitri, I. (2023). Prediksi Hasil Panen Tanaman Pangan Sumatera Dengan Metode Machine Learning. Digital Transformation Technology, 3(2), 389–398. https://doi.org/10.47709/digitech.v3i2.2852

Setiawan, A., & Suryono, R. R. (2024). Analisis Sentimen Ibu Kota Nusantara Menggunakan Algoritma Support Vector Machine Dan Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 8(1), 183–192. https://doi.org/10.29408/edumatic.v8i1.25667

Sun, J., Dang, W., Wang, F., Nie, H., Wei, X., Li, P., Zhang, S., Feng, Y., & Li, F. (2023). Prediction Of TOC Content In Organic-Rich Shale Using Machine Learning Algorithms: Comparative Study Of Random Forest, Support Vector Machine, And XGBoost. Energies, 16(10). https://doi.org/10.3390/en16104159

Taqiyuddin, M., & Bayu Sasongko, T. (2024). Prediksi Cuaca Kabupaten Sleman Menggunakan Algoritma Random Forest. Jurnal Media Informatika Budidarma, 8(3), 1683. https://doi.org/10.30865/mib.v8i3.7897

Downloads

Published

2024-12-19

How to Cite

Syahreza, A., Ningrum, N. K., & Syahrazy, M. A. (2024). Perbandingan Kinerja Model Prediksi Cuaca: Random Forest, Support Vector Regression, dan XGBoost . Edumatic: Jurnal Pendidikan Informatika, 8(2), 526–534. https://doi.org/10.29408/edumatic.v8i2.27640