Analisis Perbandingan Pearson Correlation dan Cosine Similarity pada Rekomendasi Musik berbasis Collaborative Filtering
DOI:
https://doi.org/10.29408/edumatic.v8i2.27781Keywords:
collaborative filtering, cosine similarity, music recommendations, pearson correlationAbstract
Advances in digital technology have revolutionized the world of music, making access to various genres and musicians easier and unlimited, but users still have difficulty finding music that suits their tastes. This research aims to analyze and compare the performance of the pearson correlation and cosine similarity methods on personal music recommendations based on Collaborative Filtering, with a focus on Item-Based Filtering, measured using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The dataset utilized comprises public metal music ratings from Amazon, sourced from Kaggle, totaling 19,065 samples. The k-Nearest Neighbors (KNN) algorithm was employed for recommendation prediction. The research steps included data collection, pre-processing to address missing values, duplicates, normalization, and outlier detection, followed by prediction using the KNN algorithm, and accuracy measurement using MAE and RMSE. Evaluation results indicated that Pearson Correlation produced an MAE of 0.066538 and an RMSE of 0.086698, while cosine similarity yielded an MAE of 0.066559 and an RMSE of 0.086709. These findings suggest that pearson correlation is more effective in capturing linear relationships within the rating data, leading to recommendations that are more relevant and aligned with user preferences. Pearson correlation considers the variability in each user's ratings, resulting in more accurate recommendations that align with individual rating patterns.
References
Afoudi, Y., Lazaar, M., & Al Achhab, M. (2021). Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network. Simulation Modelling Practice and Theory, 113, 102375. https://doi.org/10.1016/j.simpat.2021.102375
Agustian, E. R., & Nugroho, E. P. (2020). Sistem Rekomendasi Film Menggunakan Metode Collaborative Filtering dan K-Nearest Neighbors. JATIKOM: Jurnal Aplikasi dan Teori Ilmu Komputer, 3(1), 18-21.
Al-Bakri, N. F., & Hashim, S. H. (2018). Reducing Data Sparsity in Recommender Systems. Journal of Al-Nahrain University Science, 21(2), 138–147. https://doi.org/10.22401/JNUS.21.2.20
Anggoro, M. V., & Izzatillah, M. (2022). Sistem Rekomendasi Musik Dengan Metode Collaborative Filtering Berbasis Android. Satuan Tulisan Riset Dan Inovasi Teknologi, 7(1), 1–8.
Dewi, M. M. (2022). Optimasi Pearson Correlation untuk Sistem Rekomendasi menggunakan Algoritma Firefly. Jurnal Informatika, 9(1), 1–5. https://dx.doi.org/10.31294/inf.v9i1.10209
Februariyanti, H., Dwi Laksono, A., Sasongko Wibowo, J., & Siswo Utomo, M. (2021). Implementasi Metode Collaborative Filtering Untuk Sistem Rekomendasi Penjualan Pada Toko Mebel. Jurnal Khatulistiwa Informatika, 9(1), 43-50.
Fernanto, G. F., Intan, R., & Rostianingsih, S. (2019). Sistem rekomendasi mata kuliah pilihan menggunakan metode user based collaborative filtering berbasis algoritma adjusted cosine similarity. Jurnal Infra, 7(1), 39-45.
Geetha, G., Safa, M., Fancy, C., & Saranya, D. (2018). A Hybrid Approach using Collaborative filtering and Content based Filtering for Recommender System. Journal of Physics: Conference Series, 1000, 012101. https://doi.org/10.1088/1742-6596/1000/1/012101
Hartatik, H., Nurhayati, S. D., & Widayani, W. (2021). Sistem Rekomendasi Wisata Kuliner di Yogyakarta dengan Metode Item-Based Collaborative Filtering. Journal Automation Computer Information System, 1(2), 55–63. https://doi.org/10.47134/jacis.v1i2.8
Indriawan, W., Irham Gufroni, A., & Informatika Fakultas Teknik Universitas Siliwangi Tasikmalaya, J. (2020). Sistem Rekomendasi Penjualan Produk Pertanian Menggunakan Metode Item Based Collaborative Filtering. Jurnal Siliwangi, 6(2), 53-59.
Jaja, V. L., Susanto, B., & Sasongko, L. R. (2020). Penerapan Metode Item-Based Collaborative Filtering Untuk Sistem Rekomendasi Data MovieLens. D’CARTESIAN, 9(2), 78–83. https://doi.org/10.35799/dc.9.2.2020.28274
Mahendra, R. R., Anggraeny, F. T., & Wahanani, H. E. (2024). Implementasi Item-Based Collaborative Filtering Untuk Rekomendasi Film. Repeater : Publikasi Teknik Informatika Dan Jaringan, 2(3), 213–221. https://doi.org/10.62951/repeater.v2i3.140
Muliadi, K. H., & Lestari, C. C. (2019). Rancang Bangun Sistem Rekomendasi Tempat Makan Menggunakan Algoritma Typicality Based Collaborative Filtering. Techno.Com, 18(4), 275–287. https://doi.org/10.33633/tc.v18i4.2515
Muliawan, A., Badriyah, T., & Syarif, I. (2022). Membangun Sistem Rekomendasi Hotel dengan Content Based Filtering Menggunakan K-Nearest Neighbor dan Haversine Formula. Technomedia Journal, 7(2), 231–247. https://doi.org/10.33050/tmj.v7i2.1893
Munawar, Z., Herdiana, Y., Indah Putri, N., Informatika, M., Informatika, T., Bandung, I., & Bale Bandung, U. (2021). Sistem Rekomendasi Hibrid Menggunakan Algoritma Apriori Mining Asosiasi. Jurnal Teknologi Informasi Dan Komunikasi, 8(1), 84-95.
Mustaqim, K., Amaresti, F. A., & Dewi, I. N. (2024). Analisis Sentimen Ulasan Aplikasi PosPay untuk Meningkatkan Kepuasan Pengguna dengan Metode K-Nearest Neighbor (KNN). Edumatic: Jurnal Pendidikan Informatika, 8(1), 11–20. https://doi.org/10.29408/edumatic.v8i1.24779
Puspita, A. D., Permadi, V. A., Anggani, A. H., & Christy, E. A. (2021). Musical Instruments Recommendation System Using Collaborative Filtering and KNN. UMYGRACE : Proceedings Universitas Muhammadiyah Yogyakarta Undergraduate Conference, 1(2), 1–6.
Putra, A. I., & Santika, R. R. (2020). Implementasi Machine Learning dalam Penentuan Rekomendasi Musik dengan Metode Content-Based Filtering. Edumatic : Jurnal Pendidikan Informatika, 4(1), 121–130. https://doi.org/10.29408/edumatic.v4i1.2162
Widiyaningtyas, T., Hidayah, I., & Adji, T. B. (2021). Recommendation Algorithm Using Clustering-Based UPCSim (CB-UPCSim). Computers, 10(10), 1-17. https://doi.org/10.3390/computers10100123
Suharya, Y., Herdiana, Y., Putri, N. I., & Munawar, Z. (2021). Sistem Rekomendasi Untuk Toko Online Kecil Dan Menengah. TEMATIK, 8(2), 176-185. https://doi.org/10.38204/tematik.v8i2.683
Yollis, S., & Netti, M. (2018). Spotify: Aplikasi Music Streaming untuk Generasi Milenial. Jurnal Komunikasi, 10(1), 1-16. https://doi.org/10.24912/jk.v10i1.1102
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fatma Yuniardini, Triyanna Widiyaningtyas
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.