Implementasi BERT dan Cosine Similarity untuk Rekomendasi Dosen Pembimbing berdasarkan Judul Tugas Akhir

Authors

  • Ferris Tita Sabilillah Program Studi Teknik Informatika, Universitas Dian Nuswantoro
  • Sri Winarno Program Studi Teknik Informatika, Universitas Dian Nuswantoro
  • Ryandhika Bintang Abiyyi Program Studi Teknik Informatika, Universitas Dian Nuswantoro

DOI:

https://doi.org/10.29408/edumatic.v8i2.27791

Keywords:

bert, cosine similarity, final project, natural language processing (nlp), supervisor recommendation

Abstract

Challenges in completing final projects, which often contribute to delays in student graduation, are frequently due to a mismatch between students' research topics and the expertise of their supervisors. Therefore, a method is needed to address this misalignment in the final project process. This study aims to implement a Bidirectional Encoder Representations from Transformers (BERT) model and cosine similarity to recommend supervisors based on students' final project titles. The research dataset includes 3,723 research titles collected through web scraping from Google Scholar and ResearchGate, representing the expertise of 63 lecturers in the Informatics Engineering Program at Universitas Dian Nuswantoro. Data processing includes preprocessing to generate embedding vectors from lecturers' research titles, which are then compared with students' final project titles. Our findings indicate that the developed recommendation model achieves an accuracy of 90% in identifying relevant supervisors based on topic alignment between students' final project titles and lecturers' areas of expertise, as reflected in their publications. This result can make a significant contribution to supporting students in completing their final projects more efficiently and improving the quality of academic supervision by facilitating more appropriate supervisor selection.

References

Andriani, N., & Wibawanta, B. (2020). Peran Dosen Pembimbing Sebagai Pemimpin Yang Melayani Dalam Pembimbingan Tugas Akhir Mahasiswa Program Sarjana. Polyglot: Jurnal Ilmiah, 16(2), 230–251. https://doi.org/10.19166/pji.v16i2.1927

Apriani, A., Zakiyudin, H., & Marzuki, K. (2021). Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF System Penerimaan Mahasiswa Baru pada Kampus Swasta. Jurnal Bumigora Information Technology (BITe), 3(1), 19–27. https://doi.org/10.30812/bite.v3i1.1110

Aprilinda, Y., Martavia, T., Erlangga, E., Afandi, F. N., & Rizal, U. (2022). Chatbot Menggunakan Natural Language Processing untuk Pembelajaran Bahasa Inggris Berbasis Android. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 12(1), 23-27. https://doi.org/10.36448/expert.v12i1.2629

Aqila, N., & Bijaksana, M. A. (2020). Developing Set of Word Senses of Vocabulary in Al-Qur’an. Edumatic : Jurnal Pendidikan Informatika, 4(1), 83–90. https://doi.org/10.29408/edumatic.v4i1.2119

Asfi, M., & Fitrianingsih, N. (2020). Implementasi Algoritma Naive Bayes Classifier sebagai Sistem Rekomendasi Pembimbing Skripsi. Jurnal Nasional Informatika Dan Teknologi Jaringan, 5(1), 45–50.

Azhari, A., & Buulolo, E. (2022). Sistem Rekomendasi Dosen Pendamping Skripsi Berbasis Text Rank menggunakan Metode Cosine Similarity. Pelita Informatika, 10(3), 119–122.

Braja, A. S. P., & Kodar, A. (2023). Implementasi Fine-Tuning BERT untuk Analisis Sentimen terhadap Review Aplikasi PUBG Mobile di Google Play Store. J I M P - Jurnal Informatika Merdeka Pasuruan, 7(3), 120–128. https://doi.org/10.51213/jimp.v7i3.779

Budiono, A., & Eniyati, S. (2023). Sistem Rekomendasi Dosen Pembimbing Tugas Akhir Menggunakan Content Based Filtering. Jurnal Elektronika Dan Komputer, 16(1), 64–71.

Damanik, B. E. (2022). Pengaruh Minat Baca Dan Peran Dosen Pembimbing Terhadap Keberhasilan Penulisan Tugas Akhir. Jurnal Manajemen Pendidikan (JMP), 11(1), 28–39. https://doi.org/10.26877/jmp.v11i1.2994

Daniel, & Susanti, W. (2021). Penerapan Algoritma Cosine Similarity Pada Sistem Pengajuan. Prosiding SENATIKA 2021, 1–10.

Fitrianto, R. A., & Editya, A. S. (2024). Klasifikasi Tweet Sarkasme Pada Platform X Menggunakan Bidirectional Encoder Representations from Transformers. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(3), 366–371. https://doi.org/10.47233/jteksis.v6i3.1344

Hairani, H., & Mujahid, M. (2022). Recommendations of Thesis Supervisor using the Cosine Similarity Method. Sistemasi, 11(3), 646–654. https://doi.org/10.32520/stmsi.v11i3.2003

Hanif, J., Farid, A. N., Hasanah, M., & Barokatun, B. (2023). Penerapan Natural Language Processing untuk Klasifikasi Bidang Minat berdasarkan Judul Tugas Akhir. Jurnal Sistim Informasi Dan Teknologi, 5(1), 41–49. https://doi.org/10.37034/jsisfotek.v5i1.196

Khoirunisa, R. (2020). Penggunaan Natural Language Processing Pada Chatbot Untuk Media Informasi Pertanian. Indonesian Journal of Applied Informatics, 4(2), 55–63. https://doi.org/10.20961/ijai.v4i2.38688

Kurniawan, B., Ari Aldino, A., & Rahman Isnain, A. (2022). Sentimen Analisis terhadap Kebijakan Penyelenggara Sistem Elektronik (PSE) Menggunakan Algoritma Bidirectional Encoder Representations from Transformers (Bert). Jurnal Teknologi Dan Sistem Informasi, 3(4), 98–106.

Mustaqim, K., Amaresti, F. A., & Dewi, I. N. (2024). Analisis Sentimen Ulasan Aplikasi PosPay untuk Meningkatkan Kepuasan Pengguna dengan Metode K-Nearest Neighbor (KNN). Edumatic: Jurnal Pendidikan Informatika, 8(1), 11–20. https://doi.org/10.29408/edumatic.v8i1.24779

Nurwanda, N., Suarna, N., & Prihartono, W. (2024). Penerapan Nlp (Natural Language Processing) Dalam Analisis Sentimen Pengguna Telegram Di Playstore. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 1841–1846. https://doi.org/10.36040/jati.v8i2.8469

Pamungkas, A. S., & Cahyono, N. (2024). Analisis Sentimen Review ChatGPT di Play Store menggunakan Support Vector Machine dan K-Nearest Neighbor. Edumatic: Jurnal Pendidikan Informatika, 8(1), 1–10. https://doi.org/10.29408/edumatic.v8i1.24114

Samosir, F. V. P., Toba, H., & Ayub, M. (2022). BESKlus : BERT Extractive Summarization with K-Means Clustering in Scientific Paper. Jurnal Teknik Informatika Dan Sistem Informasi, 8(1), 202–217. https://doi.org/10.28932/jutisi.v8i1.4474

Sapanji, R. A. E. V. T., Hamdani, D., & Harahap, P. (2023). Sentiment Analysis of the Top 5 E-commerce Platforms in Indonesia using Text Mining and Natural Language Processing (NLP). Journal of Applied Informatics and Computing, 7(2), 202–211. https://doi.org/10.30871/jaic.v7i2.6517

Sugiharno, R. T., Ari Susanto, W. H., & Wospakrik, F. (2022). Faktor-Faktor yang Mempengaruhi Kecemasan Mahasiswa dalam Menghadapi Tugas Akhir. Jurnal Keperawatan Silampari, 5(2), 1189–1197. https://doi.org/10.31539/jks.v5i2.3760

Widianto, A., Pebriyanto, E., Fitriyanti, F., & Marna, M. (2024). Document Similarity using Term Frequency-Inverse Document Frequency Representation and Cosine Similarity. Journal of Data Science, Information Technology, and Data Analytics (Dinda), 4(2), 149–153. https://doi.org/10.20895/dinda.v4i2.1589

Downloads

Published

2024-12-19

How to Cite

Sabilillah, F. T., Winarno, S., & Abiyyi, R. B. (2024). Implementasi BERT dan Cosine Similarity untuk Rekomendasi Dosen Pembimbing berdasarkan Judul Tugas Akhir. Edumatic: Jurnal Pendidikan Informatika, 8(2), 585–594. https://doi.org/10.29408/edumatic.v8i2.27791