Analisis Metode Collaborative Filtering menggunakan KNN dan SVD++ untuk Rekomendasi Produk E-commerce Tokopedia
DOI:
https://doi.org/10.29408/edumatic.v8i2.27793Keywords:
collaborative filtering, data mining, e-commerce, knn algorithm, svd++ algorithmAbstract
The rapid development of internet technology has driven increased adoption of e-commerce, yet companies face challenges in enhancing users' shopping experiences. To assist users in finding products that match their preferences, relevant recommendation analysis is crucial. This research compares the effectiveness of K-Nearest Neighbors (KNN) and Singular Value Decomposition Plus Plus (SVD++) algorithms for e-commerce product recommendations using the Tokopedia Product Reviews dataset from Kaggle, which contains 40,893 reviews. The study includes data collection and preprocessing steps such as removing duplicates, replacing missing values with the average, and normalizing ratings. KNN and SVD++ are then applied to predict ratings using cosine similarity and factor matrices. Evaluation using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) shows that SVD++ outperforms KNN, achieving a lower MAE of 0.161176 and RMSE of 0.185252, compared to KNN's MAE of 0.163964 and RMSE of 0.197045. This indicates that SVD++ is more effective in delivering accuracy and capturing data complexity. The findings highlight the potential to enhance recommendation effectiveness in e-commerce, improving user satisfaction by efficiently matching products to preferences.
References
Aisha, D., & Kusumawati, R. (2022). Implementasi Metode Algoritma Collaborative Filtering dan K-Nearest Neighbor pada Sistem Rekomendasi E-Commerce. Juisikjurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, 2(3), 25–38. https://doi.org/10.55606/juisik.v2i3.314
Andra, D., & Baizal, A. B. (2022). E-commerce Recommender System Using PCA and K-Means Clustering. Jurnal Resti (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 57–63. https://doi.org/10.29207/resti.v6i1.3782
Arfisko, H. H., & Wibowo, A. T. (2022). Sistem Rekomendasi Film Menggunakan Metode Hybrid Collaborative Filtering Dan Content-Based Filtering. E-Proceeding of Engineering, 9(3), 2149–2159.
Biswas, P. K., & Liu, S. (2022). A Hybrid Recommender System for Recommending Smartphones to Prospective Customers. Expert Systems with Applications, 208. https://doi.org/10.1016/j.eswa.2022.118058
Februariyanti, H., Laksono, A. D., Wibowo, J. S., & Utomo, M. S. (2021). Implementasi Metode Collaborative Filtering untuk Sistem Rekomendasi Penjualan pada Toko Mebel. Jurnal Khatulistiwa Informatika, 9(1), 43–50.
Halim, F., Wijaya, A. H., & Wiyono. (2022). Analisis dan Perancangan E-Commerce Berbasis Web Dengan Penerapan Sistem Perekomendasian Menggunakan Metode Collaborative Filtering Serta Metode Up, Down, Cross Selling. Jurnal Algor, 4(1). https://doi.org/10.31253/algor.v4i1.1516
Muliadi, K. H., & Lestari, C. C. (2019). Rancang Bangun Sistem Rekomendasi Tempat Makan Menggunakan Algoritma Typicality Based Collaborative Filtering Engineering of a Dining Place Recommendation System Using Typicality Based Collaborative Filtering Algorithm. Jurnal Teknologi Informasi Techno.Com, 18(4), 275–287. https://doi.org/10.33633/tc.v18i4.2515
Muslim, I. A., Purnandi, H., Hazna, C. R., Atmaja, S. A., & Putra, I. E. (2021). Penggunaan Sistem E-Commerce Dalam Meningkatkan Daya Saing Pelaku Bisnis Dalam Perkembangan Dunia Usaha Studi Kasus Aplikasi Onlineshop Tokomobile. Jurnal Teknik Informatika Dan Sistem Informasi, 8(3), 1651–1664. https://doi.org/10.35957/jatisi.v8i3.1077
Natarajan, S., Vairavasundaram, S., Natarajan, S., & Gandomi, A. H. (2020). Resolving data sparsity and cold start problem in collaborative filtering recommender system using Linked Open Data. Expert Systems with Applications, 149. https://doi.org/10.1016/j.eswa.2020.113248
Purba, P. M., & Suendri, S. (2024). Aplikasi E-Comerce Produk UMKM menggunakan Metode Filtrasi Kolaboratif berbasis Mobile. Edumatic: Jurnal Pendidikan Informatika, 8(1), 300–309. https://doi.org/10.29408/edumatic.v8i1.25880
Purwani, F., Wahyudi, R. T., & Jaya, I. D. (2022). Penerapan Algoritma K-Nearest Neighbor dengan Euclidean Distance untuk Menentukan Kelompok Uang Kuliah Tunggal Mahasiswa. Edumatic: Jurnal Pendidikan Informatika, 6(2), 344–353. https://doi.org/10.29408/edumatic.v6i2.6547
Putri, M. W., Muchayan, A., & Kamisutara, M. (2018). Sistem Rekomendasi Produk Pena Eksklusif Menggunakan Metode Content-Based Filtering dan TF-IDF. Jointecs (Journal of Information Technology and Computer Science), 3(1), 229–236.
Raghavendra, C. K., & Srikantaiah, K. C. (2022). Weighted Hybrid Model for Improving Predictive Performance of Recommendation Systems Using Ensemble Learning. Indian Journal of Computer Science and Engineering, 13(2), 513–524. https://doi.org/10.21817/indjcse/2022/v13i2/221302133
Rubangi, & Rianto. (2022). Sistem Rekomendasi Pada Tokopedia Menggunakan Algoritma K-Nearest Neighbor. Jurnal Teknik Komputer Amik Bsi, 8(1), 103–107. https://doi.org/10.31294/jtk.v4i2
Saifudin, I., & Widiyaningtyas, T. (2024). Systematic Literature Review on Recommender System: Approach, Problem, Evaluation Techniques, Datasets. IEEE, 12, 19827–19847. https://doi.org/10.1109/ACCESS.2024.3359274
Sari, R. K., Suharso, W., & Azhar, Y. (2020). Pembuatan Sistem Rekomendasi Film dengan Menggunakan Metode Item Based Collaborative Filtering pada Apache Mahout. Repositor, 2(6), 767–774. https://doi.org/10.22219/repositor.v2i6.30715
Syah, R. D. (2020). Performa Algoritma User K-Nearest Neighbors pada Sistem Rekomendasi di Tokopedia. Jurnal Informatika Universitas Pamulang, 5(3), 302–306. https://doi.org/10.32493/informatika.v5i3.6312
Tewari, A. S. (2020). Generating Items Recommendations by Fusing Content and User-Item based Collaborative Filtering. Procedia Computer Science, 167, 1934–1940. https://doi.org/10.1016/j.procs.2020.03.215
Wang, S., Sun, G., & Li, Y. (2020). SVD++ Recommendation Algorithm Based on Backtracking. Information (Switzerland), 11(7). https://doi.org/10.3390/info11070369
Zulvian, S. A., Prihandani, K., & Ridha, A. A. (2021). Perbandingan Metode MSD dan Cosine Similarity pada Sistem Rekomendasi Item-Based Collaborative Filtering. Journal of Information Technology and Computer Science (Intecoms), 4(2), 340–347. https://doi.org/10.31539/intecoms.v4i2.2781
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Chalista Yulia Hazizah, Triyanna Widiyaningtyas
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.