Integrasi Kamus Multibahasa pada Feed Forward Neural Network dan IndoBERT dalam Pengembangan Chatbot Mobile
DOI:
https://doi.org/10.29408/edumatic.v8i2.27886Keywords:
chatbot, feed forward neural network, indobert, multilingual dictionaries, mobile appsAbstract
The development of digital technology drives the need for efficient and responsive communication services that support multilingual. This study aims to develop a chatbot that facilitates communication and operational tasks for users of the DigiTeam application by integrating a multilingual dictionary into the Feed Forward Neural Network (FFNN) model and IndoBERT. The research method used is CRISP-DM, a systematic approach in data exploration, preparation, modeling, and implementation. The DigiTeam application was developed using the Agile methodology to gradually enhance the features and functionalities of the application. The dataset consists of 456 patterns and 106 tags containing common and operational work-related questions. This study utilizes a multilingual dictionary with 309 words to improve the chatbot's context understanding and response accuracy to user queries. The test results show that integrating the multilingual dictionary into the FFNN and IndoBERT models yields an accuracy of 95.45% with balanced precision and recall, demonstrating the chatbot's ability to understand and respond to multilingual queries in real-time, while also improving operational efficiency and information access in the workplace.
References
Aljabar, A., & Karomah, B. M. (2024). Mengungkap Opini Publik: Pendekatan BERT-based-caused untuk Analisis Sentimen pada Komentar Film. Journal of System and Computer Engineering (JSCE), 5(1), 2723–1240. https://doi.org/10.61628/jsce.v5i1.1060
Astuti, W., Wibawa, A. P., Haviluddin, & Herdianti, D. (2024). DIET Classifier Model Analysis for Words Prediction in Academic Chatbot. ILKOM Jurnal Ilmiah, 16(1), 59–67. https://doi.org/10.33096/ilkom.v16i1.1598.59-67
Cannavaro, N. (2023). Aplikasi Chatbot untuk Layanan Akademik Menggunakan Platform RASA Open Source dengan Fitur Two Stage Fallback. Jurnal Ilmu Komputer Dan Informatika, 3(1), 53–64. https://doi.org/10.54082/jiki.73
Dzaky, A. A., Zeniarja, J., Supriyanto, C., Shidik, G. F., Paramita, C., Subhiyakto, E. R., & Rakasiwi, S. (2024). Optimization Chatbot Services Based on DNN-Bert for Mental Health of University Students. Journal of Applied Informatics and Computing (JAIC), 8(1), 2548–6861. https://doi.org/10.30871/jaic.v8i1.7403
Faurina, R., Revanza, D., & Sopran, A. (2023). Pengembangan Chatbot Menggunakan Deep Feed-Forward Neural Network sebagai Pusat Layanan Informasi Akademik. Jurnal Eksplora Informatika, 11(2), 120–129. https://doi.org/10.30864/eksplora.v11i2.833
Fidiyanti, F., Subagja, A. R., Wachyu, R. P., & Madiistriyatno, H. (2023). Analisis Strategi Pengembangan Bisnis Menggunakan Teknologi Artificial Intelegence. Journal of Comprehensive Science (JCS), 2(7), 1994–2001. https://doi.org/10.59188/jcs.v2i7.425
Guntara, R. G. (2022). Aplikasi Chatbot Konsultan Bisnis untuk UMKM Berbasis Dialogflow pada Platform Android. Indonesian Journal of Digital Business, 2(1), 9–16. https://doi.org/10.17509/ijdb.v2i1.49405
Koto, F., Rahimi, A., Lau, J. H., & Baldwin, T. (2020). IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP. In D. Scott, N. Bel, & C. Zong (Eds.), Proceedings of the 28th International Conference on Computational Linguistics (pp. 757–770). International Committee on Computational Linguistics. https://doi.org/10.18653/v1/2020.coling-main.66
Matalarens, A., & Setyowatie, D. (2023). Perancangan Aplikasi Chatbot FAQ Berbasiskan Aplikasi Android. Prosiding Seminar Nasional Pemanfaatan Sains Dan Teknologi Informasi, 1(1), 281–286.
Mustakim, F., aFauziah, F., & Hayati, N. (2021). Algoritma Artificial Neural Network pada Text-based Chatbot Frequently Asked Question (FAQ) Web Kuliah Universitas Nasional. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 5(4), 438–446. https://doi.org/10.35870/jtik.v5i4.261
Owen, C., & Suhartono, D. (2024). Intent Classification in Artificial Intelligence-Based Customer Service Chatbot for E-Wallet Service Providers. International Journal of Computing and Digital Systems, 17(1), 1–10.
Pambudi, A., Abidin, Z., & Permata. (2023). Penerapan Crisp-Dm Menggunakan Mlr K-Fold Pada Data Saham Pt. Telkom Indonesia (Persero) Tbk (Tlkm)(Studi Kasus: Bursa Efek Indonesia Tahun 2015-2022). Jurnal Data Mining Dan Sistem Informasi, 4(1), 1–14. https://doi.org/10.33365/jdmsi.v4i1.2462
Pramana, R. A., & Romadhony, A. (2024). Identifikasi Similar Question dengan IndoBERT (Studi Kasus Dataset QAS Covid-19). Jurnal Penelitian Informatika, 2(1), 12–17. https://doi.org/10.25124/logic.v2i1.7437
Pratama, R., Pradana, F. A., Chandra, M., & Bonita, A. (2021). Chatbot interaksi rumah sakit menggunakan FFNN. Indonesian Journal of Data and Science, 2(2), 62–68. https://doi.org/10.56705/ijodas.v3i1.36
Pratiwi, A. S., Siswono, G. O., & Saputri, P. D. (2023). Financial Distress Classification Using Feedforward Neural Network Based on Altman and Ohlson Financial Ratios. Jurnal Matematika, Statistika Dan Komputasi, 20(1), 184–195. https://doi.org/10.20956/j.v20i1.27742
Putri, T. E., & Ramadhan, G. (2024). Penerapan Chatbot sebagai Alat Pembelajaran untuk Pengembangan Pendidikan Karakter. Indonesian Journal of Computer Science and Engineering, 1(01), 32–38.
Setyasih, E. T. (2022). Transformasi Digital Pemerintah Daerah Di Era Society 5.0: Studi Kasus Di Provinsi Jawa Barat. PAPATUNG: Jurnal Ilmu Administrasi Publik, Pemerintahan Dan Politik, 5(3), 59–66. https://doi.org/10.54783/japp.v5i3.657
Simanjuntak, A., Lumbantoruan, R., Sianipar, K., Gultom, R., Simaremare, M., Situmeang, S., & Panggabean, E. (2024). Research and Analysis of IndoBERT Hyperparameter Tuning in Fake News Detection. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 13(1), 60–67. https://doi.org/10.22146/jnteti.v13i1.8532
Syarof, H. I., & Rasal, I. (2024). Aplikasi Chatbot sebagai Layanan Informasi Virtual pada Website Infinite Learning. Edumatic: Jurnal Pendidikan Informatika, 8(1), 56–64. https://doi.org/10.29408/edumatic.v8i1.25215
Widiansyah, M., Az-Zahra, F. F., & Pambudi, A. (2024). Fine-Tuning Model Indobert (Indonesian Bidirectional Encoder Representations from Transformers) untuk Analisis Sentimen Berbasis Aspek pada Aplikasi M-Paspor. Journal of Informatic Engineering (JOUTICA), 9(2), 183–195.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Arba Adhy Pamungkas, Cecep Nurul Alam, Aldy Rialdy Atmadja, Roby Juliansyah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.