Integrasi Kamus Multibahasa pada Feed Forward Neural Network dan IndoBERT dalam Pengembangan Chatbot Mobile

Authors

  • Arba Adhy Pamungkas Program Studi Informatika, Universitas Islam Sunan Gunung Djati Bandung
  • Cecep Nurul Alam Program Studi Informatika, Universitas Islam Sunan Gunung Djati Bandung
  • Aldy Rialdy Atmadja Program Studi Informatika, Universitas Islam Sunan Gunung Djati Bandung
  • Roby Juliansyah Dinas Komunikasi dan Informatika Provinsi Jawa Barat

DOI:

https://doi.org/10.29408/edumatic.v8i2.27886

Keywords:

chatbot, feed forward neural network, indobert, multilingual dictionaries, mobile apps

Abstract

The development of digital technology drives the need for efficient and responsive communication services that support multilingual. This study aims to develop a chatbot that facilitates communication and operational tasks for users of the DigiTeam application by integrating a multilingual dictionary into the Feed Forward Neural Network (FFNN) model and IndoBERT. The research method used is CRISP-DM, a systematic approach in data exploration, preparation, modeling, and implementation. The DigiTeam application was developed using the Agile methodology to gradually enhance the features and functionalities of the application. The dataset consists of 456 patterns and 106 tags containing common and operational work-related questions. This study utilizes a multilingual dictionary with 309 words to improve the chatbot's context understanding and response accuracy to user queries. The test results show that integrating the multilingual dictionary into the FFNN and IndoBERT models yields an accuracy of 95.45% with balanced precision and recall, demonstrating the chatbot's ability to understand and respond to multilingual queries in real-time, while also improving operational efficiency and information access in the workplace.

Author Biography

Aldy Rialdy Atmadja, Program Studi Informatika, Universitas Islam Sunan Gunung Djati Bandung

Program Studi Informatika

References

Aljabar, A., & Karomah, B. M. (2024). Mengungkap Opini Publik: Pendekatan BERT-based-caused untuk Analisis Sentimen pada Komentar Film. Journal of System and Computer Engineering (JSCE), 5(1), 2723–1240. https://doi.org/10.61628/jsce.v5i1.1060

Astuti, W., Wibawa, A. P., Haviluddin, & Herdianti, D. (2024). DIET Classifier Model Analysis for Words Prediction in Academic Chatbot. ILKOM Jurnal Ilmiah, 16(1), 59–67. https://doi.org/10.33096/ilkom.v16i1.1598.59-67

Cannavaro, N. (2023). Aplikasi Chatbot untuk Layanan Akademik Menggunakan Platform RASA Open Source dengan Fitur Two Stage Fallback. Jurnal Ilmu Komputer Dan Informatika, 3(1), 53–64. https://doi.org/10.54082/jiki.73

Dzaky, A. A., Zeniarja, J., Supriyanto, C., Shidik, G. F., Paramita, C., Subhiyakto, E. R., & Rakasiwi, S. (2024). Optimization Chatbot Services Based on DNN-Bert for Mental Health of University Students. Journal of Applied Informatics and Computing (JAIC), 8(1), 2548–6861. https://doi.org/10.30871/jaic.v8i1.7403

Faurina, R., Revanza, D., & Sopran, A. (2023). Pengembangan Chatbot Menggunakan Deep Feed-Forward Neural Network sebagai Pusat Layanan Informasi Akademik. Jurnal Eksplora Informatika, 11(2), 120–129. https://doi.org/10.30864/eksplora.v11i2.833

Fidiyanti, F., Subagja, A. R., Wachyu, R. P., & Madiistriyatno, H. (2023). Analisis Strategi Pengembangan Bisnis Menggunakan Teknologi Artificial Intelegence. Journal of Comprehensive Science (JCS), 2(7), 1994–2001. https://doi.org/10.59188/jcs.v2i7.425

Guntara, R. G. (2022). Aplikasi Chatbot Konsultan Bisnis untuk UMKM Berbasis Dialogflow pada Platform Android. Indonesian Journal of Digital Business, 2(1), 9–16. https://doi.org/10.17509/ijdb.v2i1.49405

Koto, F., Rahimi, A., Lau, J. H., & Baldwin, T. (2020). IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP. In D. Scott, N. Bel, & C. Zong (Eds.), Proceedings of the 28th International Conference on Computational Linguistics (pp. 757–770). International Committee on Computational Linguistics. https://doi.org/10.18653/v1/2020.coling-main.66

Matalarens, A., & Setyowatie, D. (2023). Perancangan Aplikasi Chatbot FAQ Berbasiskan Aplikasi Android. Prosiding Seminar Nasional Pemanfaatan Sains Dan Teknologi Informasi, 1(1), 281–286.

Mustakim, F., aFauziah, F., & Hayati, N. (2021). Algoritma Artificial Neural Network pada Text-based Chatbot Frequently Asked Question (FAQ) Web Kuliah Universitas Nasional. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 5(4), 438–446. https://doi.org/10.35870/jtik.v5i4.261

Owen, C., & Suhartono, D. (2024). Intent Classification in Artificial Intelligence-Based Customer Service Chatbot for E-Wallet Service Providers. International Journal of Computing and Digital Systems, 17(1), 1–10.

Pambudi, A., Abidin, Z., & Permata. (2023). Penerapan Crisp-Dm Menggunakan Mlr K-Fold Pada Data Saham Pt. Telkom Indonesia (Persero) Tbk (Tlkm)(Studi Kasus: Bursa Efek Indonesia Tahun 2015-2022). Jurnal Data Mining Dan Sistem Informasi, 4(1), 1–14. https://doi.org/10.33365/jdmsi.v4i1.2462

Pramana, R. A., & Romadhony, A. (2024). Identifikasi Similar Question dengan IndoBERT (Studi Kasus Dataset QAS Covid-19). Jurnal Penelitian Informatika, 2(1), 12–17. https://doi.org/10.25124/logic.v2i1.7437

Pratama, R., Pradana, F. A., Chandra, M., & Bonita, A. (2021). Chatbot interaksi rumah sakit menggunakan FFNN. Indonesian Journal of Data and Science, 2(2), 62–68. https://doi.org/10.56705/ijodas.v3i1.36

Pratiwi, A. S., Siswono, G. O., & Saputri, P. D. (2023). Financial Distress Classification Using Feedforward Neural Network Based on Altman and Ohlson Financial Ratios. Jurnal Matematika, Statistika Dan Komputasi, 20(1), 184–195. https://doi.org/10.20956/j.v20i1.27742

Putri, T. E., & Ramadhan, G. (2024). Penerapan Chatbot sebagai Alat Pembelajaran untuk Pengembangan Pendidikan Karakter. Indonesian Journal of Computer Science and Engineering, 1(01), 32–38.

Setyasih, E. T. (2022). Transformasi Digital Pemerintah Daerah Di Era Society 5.0: Studi Kasus Di Provinsi Jawa Barat. PAPATUNG: Jurnal Ilmu Administrasi Publik, Pemerintahan Dan Politik, 5(3), 59–66. https://doi.org/10.54783/japp.v5i3.657

Simanjuntak, A., Lumbantoruan, R., Sianipar, K., Gultom, R., Simaremare, M., Situmeang, S., & Panggabean, E. (2024). Research and Analysis of IndoBERT Hyperparameter Tuning in Fake News Detection. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 13(1), 60–67. https://doi.org/10.22146/jnteti.v13i1.8532

Syarof, H. I., & Rasal, I. (2024). Aplikasi Chatbot sebagai Layanan Informasi Virtual pada Website Infinite Learning. Edumatic: Jurnal Pendidikan Informatika, 8(1), 56–64. https://doi.org/10.29408/edumatic.v8i1.25215

Widiansyah, M., Az-Zahra, F. F., & Pambudi, A. (2024). Fine-Tuning Model Indobert (Indonesian Bidirectional Encoder Representations from Transformers) untuk Analisis Sentimen Berbasis Aspek pada Aplikasi M-Paspor. Journal of Informatic Engineering (JOUTICA), 9(2), 183–195.

Downloads

Published

2024-12-19

How to Cite

Pamungkas, A. A., Alam, C. N., Atmadja, A. R., & Juliansyah, R. (2024). Integrasi Kamus Multibahasa pada Feed Forward Neural Network dan IndoBERT dalam Pengembangan Chatbot Mobile. Edumatic: Jurnal Pendidikan Informatika, 8(2), 635–644. https://doi.org/10.29408/edumatic.v8i2.27886