Penerapan Metode Convolutional Neural Network pada Sistem Klasifikasi Penyakit Tanaman Apel berdasarkan Citra Daun
DOI:
https://doi.org/10.29408/edumatic.v8i2.27958Keywords:
apple disease, classification system, cnn, digital imageAbstract
Apple leaf diseases can cause significant crop failure and impact the economy of farmers and the agricultural industry. With the increasing demand for quality apples, it is important to develop effective and efficient solutions to detect apple plant diseases early. This research aims to develop an automated system that can identify diseases in apple plants based on leaf images using the Convolutional Neural Network (CNN) model. This model was developed with the ResNet50V2 architecture to classify four leaf conditions: three types of common diseases and one healthy condition. This research applies the CNN model for leaf image processing and the Waterfall system development method. The stages start from needs analysis by collecting data to be processed by the cnn model, interface design of the classification system, program code implementation, and functionality testing using black-box testing. CNN model development includes the stages of collecting datasets sourced from Malang apple plantations as many as 150 images and Kaggle public datasets totalling 3,071 images, then image preprocessing, model development and training. Our research results produced an apple plant disease classification system by implementing the CNN model. Based on the results of testing the system and the model used, it shows that the CNN model applied in the system achieves a classification accuracy of 99.01%, and the functionality of the system built runs well.
References
Cahya, F. N., Hardi, N., Riana, D., & Hadianti, S. (2021). Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network (CNN). SISTEMASI: Jurnal Sistem Informasi, 10(3), 618–626. https://doi.org/10.32520/stmsi.v10i3.1248
Fadjeri, A., Saputra, B. A., Adri, D. K., & Kurniatin, L. (2022). Karakteristik Morfologi Tanaman Selada Menggunakan Pengolahan Citra Digital. Jurnal Ilmiah SINUS, 20(2), 1–12. https://doi.org/10.30646/sinus.v20i2.601
Fitri, I., Sumijan, & Masparudin. (2024). Pengembangan Sistem Klasifikasi Buah Apel menggunakan Convolutional Neural Network (CNN) Arsitektur MobileNet pada Platform Android. SISTEMASI: Jurnal Sistem Informasi, 13(1), 230–243. https://doi.org/10.32520/stmsi.v13i1.3533
Heru, S. G., & Fatma, Y. (2023). Pemanfaatan Teknologi Internet of Things (Iot) Pada Bidang Pertanian. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 1–5. https://doi.org/10.36040/jati.v7i1.5892
Huda, P. A. P., Riadi, A. A., & Evanita, E. (2021). Klasifikasi Penyakit Tanaman pada Daun Apel dan Anggur Menggunakan Convolutional Neural Networks. Jurnal Manajemen Informatika (JUMIKA), 8(1), 11-20.
Izzulhaq, M. A. (2024). Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet50V2 Untuk Mengidentifikasi Penyakit Pneumonia. Indonesian Journal of Mathematics and Natural Sciences, 47(1), 12–22.
Kulsum, U., & Cherid, A. (2023). Penerapan Convolutional Neural Network Pada Klasifikasi Tanaman Menggunakan ResNet50. SIMKOM, 8(2), 221–228. https://doi.org/10.51717/simkom.v8i2.191
Lesmana, A. M., Fadhillah, R. P., & Rozikin, C. (2022). Identifikasi Penyakit pada Citra Daun Kentang Menggunakan Convolutional Neural Network (CNN). Jurnal Sains Dan Informatika, 8(1), 21–30. https://doi.org/10.34128/jsi.v8i1.377
Mas’ud, R. A., & Junta, Z. (2024). Optimasi Convolutional Neural Networks untuk Deteksi Kanker Payudara menggunakan Arsitektur DenseNet. Edumatic: Jurnal Pendidikan Informatika, 8(1), 310–318. https://doi.org/10.29408/edumatic.v8i1.25883
Mustofa, M. I., Furqon, M. T., & ... (2022). Penggunaan Metode Ekstraksi Fitur Tekstur Gray Level Co-ocurrrence Matrix dan K-Nearest Neighbor untuk Identifikasi Jenis Penyakit Tanaman Apel. Jptiik, 6(9), 4451–4458.
Paliwang, A. A., Septian, R. D., Cahyanti, M., & Swedia, E. R. (2020). Klasifikasi Penyakit Tanaman Apel Dari Citra Daun Dengan Convolutional Neural Network. Sebatik, 24(2), 207–212. https://doi.org/10.46984/sebatik.v24i2.1060
Putra, I. P., & Alamsyah, D. (2022). Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network. Jurnal Algoritme, 2(2), 102–112. https://doi.org/10.35957/algoritme.v2i2.2360
Rasywir, E., Sinaga, R., & Pratama, Y. (2020). Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN). Paradigma - Jurnal Komputer Dan Informatika, 22(2), 117–123. https://doi.org/10.31294/p.v22i2.8907
Rosyidah, I. (2024). Implementasi Pengolahan Citra Untuk Mendeteksi Kadar Nutrisi AB MIX Tanaman Pakcoy Hidroponik Implementation of Image Processing on Hydroponic Pakcoy Plants to Detect AB MIX Nutrient Levels. Jambura: Journal of Electrical and Electronics Engineering, 6(2), 234–239. https://doi.org/10.37905/jjeee.v6i2.26143
Soekarta, R., Nurdjan, N., & Syah, A. (2023). Klasifikasi Penyakit Tanaman Tomat Menggunakan Metode Convolutional Neural Network (CNN). INSECT: Informatics and Security, 8(2), 143–151. https://doi.org/10.33506/insect.v8i2.2356
Talanrea, S. I., Hadi, S. W., & Prakoso, B. S. (2022). Evaluasi Usability pada Aplikasi E-LPPD Provinsi Jawa Timur menggunakan Metode Heuristic Evaluation dan Usability Testing. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(10), 4766–4774.
Ula, M., Ulva, A. F., & Mauliza, M. (2021). Implementasi Machine Learning Dengan Model Case Based Reasoning Dalam Mendagnosa Gizi Buruk Pada Anak. Jurnal Informatika Kaputama (JIK), 5(2), 333–339. https://doi.org/10.59697/jik.v5i2.267
Wulandari, I., Yasin, H., & Widiharih, T. (2020). Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (CNN). Jurnal Gaussian, 9(3), 273–282. https://doi.org/10.14710/j.gauss.9.3.273-282
Yana, Y. E., & Nafi’iyah, N. (2021). Klasifikasi Jenis Pisang Berdasarkan Fitur Warna, Tekstur, Bentuk Citra Menggunakan SVM dan KNN. RESEARCH: Journal of Computer, Information System & Technology Management, 4(1), 28–36. https://doi.org/10.25273/research.v4i1.6687
Zalvadila, A., Syafie, L., & Darwis, H. (2023). Klasifikasi Penyakit Tanaman Bawang Merah Menggunakan Metode SVM dan CNN. JPIT, 8(3), 255–260. https://doi.org/10.30591/jpit.v8i3.5341
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nicholas Bagus Pamungkas, Agus Suhendar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.