Klasifikasi Kategori Produk untuk Manajemen Keuangan Remaja menggunakan Algoritma Long Short-Term Memory
DOI:
https://doi.org/10.29408/edumatic.v8i2.27959Keywords:
financial record keeping application, financial management, lstm, text processingAbstract
Generation Z often faces difficulties in managing their finances due to impulsive spending habits and a lack of financial planning, which can lead to long-term issues such as overspending and minimal savings. This research aims to develop a category classification model that can be integrated into a financial tracking application to help young people manage their money more effectively. The main feature of the application is an automated system that classifies product names into expense categories such as food, transportation, and shopping using a Long Short-Term Memory (LSTM) model. LSTM was chosen for its ability to understand word sequences and text context, which is essential in product grouping. The dataset used consists of 4,499 product entries divided into three categories: 1,488 for food, 1,682 for transportation, and 1,329 for shopping. The model was trained using a supervised learning approach, with data split for training and testing. The model achieved 86% accuracy on both validation and test data, with additional metrics such as precision, recall, and F1-score indicating good performance. This study contributes by applying innovative preprocessing techniques and oversampling to address data imbalance, which is expected to enhance the model's accuracy in classifying expenses.
References
Anjani, D., Robiah, S., Khotimah, L., & Adinugraha, H. (2022). Pelatihan Manajemen Keuangan Guna Mengatur Keuangan Pribadi serta Investasi Masa Depan Bagi Remaja. Journal of Applied Community Engagement, 2(1), 61–69. https://doi.org/10.52158/jace.v2i1.320
Cahyo, P. W., & Aesyi, U. S. (2023). Perbandingan LSTM dengan Support Vector Machine dan Multinomial Naïve Bayes pada Klasifikasi Kategori Hoax. Jurnal Transformatika, 20(2), 23–29. https://doi.org/10.26623/transformatika.v20i2.5880
Daiman, C. N., Rahman, A. Y., Nudiyansyah, F., Studi, P., Informatika, T., Teknik, F., Malang, U. W., Teks, K., News, B., & Tinggi, A. (2024). Klasifikasi Teks Berita Breaking News Di Manggarai Menggunakan Long Short Term Memory. Jurnal Mnemonic, 7(2), 170–174. https://doi.org/https://doi.org/10.36040/mnemonic.v7i2.9939
Fajrina, A. N., Pradana, Z. H., Purnama, S. I., & Romadhona, S. (2024). Penerapan Arsitektur EfficientNet-B0 Pada Klasifikasi Leukimia Tipe Acute Lymphoblastik Leukimia. Jurnal Riset Rekayasa Elektro, 6(1), 59. https://doi.org/10.30595/jrre.v6i1.22090
Gumelar, G., Ain, Q., Marsuciati, R., Agustanti Bambang, S., Sunyoto, A., & Syukri Mustafa, M. (2021). Kombinasi Algoritma Sampling dengan Algoritma Klasifikasi untuk Meningkatkan Performa Klasifikasi Dataset Imbalance. SISFOTEK : Sistem Informasi Dan Teknologi, 250–255.
Hani, D. S., & Ratnasari, C. I. (2023). Klasifikasi Masalah Pada Komunitas Marah-Marah di Twitter Menggunakan Long Short-Term Memory. Jurnal Media Informatika Budidarma, 7, 1829–1837. https://doi.org/10.30865/mib.v7i4.6755
Mabrouk, A., & Redondo, R. P. D. (2020). Deep Learning-Based Sentiment Classification : A Comparative Survey. IEEE Access, 8, 85616–85638. https://doi.org/10.1109/ACCESS.2020.2992013
Maia, W. F., Carmignani, A., Bortoli, G., Maretti, L., Luz, D., Guzman, D. C. F., ... & Neto, F. L. (2024). Multi-level Product Category Prediction through Text Classification. arXiv preprint arXiv:2403.01638.
Nisa, C., & Candra, F. (2023). Klasifikasi Jenis Rempah-Rempah Menggunakan Algoritma Convolutional Neural Network. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 78–84. https://doi.org/10.57152/malcom.v4i1.1018
Nofiyani, N., & Wulandari, W. (2022). Implementasi Electronic Data Processing Untuk meningkatkan Efektifitas dan Efisiensi Pada Text Mining. Jurnal Media Informatika Budidarma, 6(3), 1621–1629. https://doi.org/10.30865/mib.v6i3.4332
Pramayasa, K., Maysanjaya, I. M. D., & Indradewi, I. G. A. A. D. (2023). Analisis Sentimen Program Mbkm Pada Media Sosial Twitter Menggunakan KNN Dan SMOTE. SINTECH (Science and Information Technology) Journal, 6(2), 89–98. https://doi.org/10.31598/sintechjournal.v6i2.1372
Purnama, J. J. (2024). Penerapan Algoritma K-Means Untuk Mengelompokkan Kepadatan. Journal of Applied Computer Science and Technology (Jacost), 5(1), 50–55. https://doi.org/doi.org/10.52158/jacost.v5i1.809
Rafif, M. F., Patria, A. S., & Surabaya, U. N. (2021). Perancangan Mobile Game. ANDHAPURA: Jurnal Desain Komunikasi Visual & Multimedia, 07(02), 268–281. https://doi.org/10.33633/andharupa.v7i2.3966
Shah, S. A. A., Masood, M. A., & Yasin, A. (2022). Dark web: E-commerce information extraction based on name entity recognition using bidirectional-LSTM. IEEE Access, 10, 99633-99645. https://doi.org/10.1109/ACCESS.2022.3206539
Sujjada, A. (2024). Prediksi Harga Bitcoin Menggunakan Algoritma Long ShortTerm Memory. JURNAL INOVTEK POLBENG, 9, 450–459. https://doi.org/10.35314/isi.v9i1.4247
Triani, A., & Mulyadi, H. (2019). Peningkatan Pengalaman Keuangan Remaja Untuk Literasi Keuangan Syariah Yang Lebih Baik. I-Finance: A Research Journal on Islamic Finance, 5(1), 9–22. https://doi.org/10.19109/ifinace.v5i1.3714
Ulum, M. T., & Yuhertiana, I. (2024). Studi Literatur: Relevansi Perilaku Keuangan Dan Nilai-Nilai Bela Negara Pada Generasi Z. Journal of Economic, Bussines and Accounting (COSTING), 7(4), 7728-7738. https://doi.org/10.31539/costing.v7i4.10075
Venia, M., Marzuki, F., & Yuliniar. (2021). Analisis Faktor yang Mempengaruhi Perilaku Impulse Buying (Studi Kasus pada Generasi Z Pengguna E-commerce ). Korelasi Riset Nasional Ekonomi, Manajemen, Dan Akuntansi, 2(1), 929–941.
Widiantari, K. S., Mahadewi, I. A. G. D. F., Suidarma, I. M., & Arlita, I. G. A. D. (2023). Pengaruh Literasi Keuangan, E-Money Dan Gaya Hidup Terhadap Perilaku Keuangan Generasi Z Pada Cashless Society. Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA), 7(3), 429–447. https://doi.org/10.31955/mea.v7i3.2802
Yu, L., Zhou, R., Chen, R., & Lai, K. K. (2022). Missing Data Preprocessing in Credit Classification: One-Hot Encoding or Imputation? Emerging Markets Finance and Trade, 58(2), 472–482. https://doi.org/10.1080/1540496X.2020.1825935
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hendra Sutrisno, Nurul Anisa Sri Winarsih
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.