Klasifikasi Kategori Produk untuk Manajemen Keuangan Remaja menggunakan Algoritma Long Short-Term Memory

Authors

  • Hendra Sutrisno Program Studi Teknik Informatika, Universitas Dian Nuswantoro
  • Nurul Anisa Sri Winarsih Program Studi Teknik Informatika, Universitas Dian Nuswantoro

DOI:

https://doi.org/10.29408/edumatic.v8i2.27959

Keywords:

financial record keeping application, financial management, lstm, text processing

Abstract

Generation Z often faces difficulties in managing their finances due to impulsive spending habits and a lack of financial planning, which can lead to long-term issues such as overspending and minimal savings. This research aims to develop a category classification model that can be integrated into a financial tracking application to help young people manage their money more effectively. The main feature of the application is an automated system that classifies product names into expense categories such as food, transportation, and shopping using a Long Short-Term Memory (LSTM) model. LSTM was chosen for its ability to understand word sequences and text context, which is essential in product grouping. The dataset used consists of 4,499 product entries divided into three categories: 1,488 for food, 1,682 for transportation, and 1,329 for shopping. The model was trained using a supervised learning approach, with data split for training and testing. The model achieved 86% accuracy on both validation and test data, with additional metrics such as precision, recall, and F1-score indicating good performance. This study contributes by applying innovative preprocessing techniques and oversampling to address data imbalance, which is expected to enhance the model's accuracy in classifying expenses.

References

Anjani, D., Robiah, S., Khotimah, L., & Adinugraha, H. (2022). Pelatihan Manajemen Keuangan Guna Mengatur Keuangan Pribadi serta Investasi Masa Depan Bagi Remaja. Journal of Applied Community Engagement, 2(1), 61–69. https://doi.org/10.52158/jace.v2i1.320

Cahyo, P. W., & Aesyi, U. S. (2023). Perbandingan LSTM dengan Support Vector Machine dan Multinomial Naïve Bayes pada Klasifikasi Kategori Hoax. Jurnal Transformatika, 20(2), 23–29. https://doi.org/10.26623/transformatika.v20i2.5880

Daiman, C. N., Rahman, A. Y., Nudiyansyah, F., Studi, P., Informatika, T., Teknik, F., Malang, U. W., Teks, K., News, B., & Tinggi, A. (2024). Klasifikasi Teks Berita Breaking News Di Manggarai Menggunakan Long Short Term Memory. Jurnal Mnemonic, 7(2), 170–174. https://doi.org/https://doi.org/10.36040/mnemonic.v7i2.9939

Fajrina, A. N., Pradana, Z. H., Purnama, S. I., & Romadhona, S. (2024). Penerapan Arsitektur EfficientNet-B0 Pada Klasifikasi Leukimia Tipe Acute Lymphoblastik Leukimia. Jurnal Riset Rekayasa Elektro, 6(1), 59. https://doi.org/10.30595/jrre.v6i1.22090

Gumelar, G., Ain, Q., Marsuciati, R., Agustanti Bambang, S., Sunyoto, A., & Syukri Mustafa, M. (2021). Kombinasi Algoritma Sampling dengan Algoritma Klasifikasi untuk Meningkatkan Performa Klasifikasi Dataset Imbalance. SISFOTEK : Sistem Informasi Dan Teknologi, 250–255.

Hani, D. S., & Ratnasari, C. I. (2023). Klasifikasi Masalah Pada Komunitas Marah-Marah di Twitter Menggunakan Long Short-Term Memory. Jurnal Media Informatika Budidarma, 7, 1829–1837. https://doi.org/10.30865/mib.v7i4.6755

Mabrouk, A., & Redondo, R. P. D. (2020). Deep Learning-Based Sentiment Classification : A Comparative Survey. IEEE Access, 8, 85616–85638. https://doi.org/10.1109/ACCESS.2020.2992013

Maia, W. F., Carmignani, A., Bortoli, G., Maretti, L., Luz, D., Guzman, D. C. F., ... & Neto, F. L. (2024). Multi-level Product Category Prediction through Text Classification. arXiv preprint arXiv:2403.01638.

Nisa, C., & Candra, F. (2023). Klasifikasi Jenis Rempah-Rempah Menggunakan Algoritma Convolutional Neural Network. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 78–84. https://doi.org/10.57152/malcom.v4i1.1018

Nofiyani, N., & Wulandari, W. (2022). Implementasi Electronic Data Processing Untuk meningkatkan Efektifitas dan Efisiensi Pada Text Mining. Jurnal Media Informatika Budidarma, 6(3), 1621–1629. https://doi.org/10.30865/mib.v6i3.4332

Pramayasa, K., Maysanjaya, I. M. D., & Indradewi, I. G. A. A. D. (2023). Analisis Sentimen Program Mbkm Pada Media Sosial Twitter Menggunakan KNN Dan SMOTE. SINTECH (Science and Information Technology) Journal, 6(2), 89–98. https://doi.org/10.31598/sintechjournal.v6i2.1372

Purnama, J. J. (2024). Penerapan Algoritma K-Means Untuk Mengelompokkan Kepadatan. Journal of Applied Computer Science and Technology (Jacost), 5(1), 50–55. https://doi.org/doi.org/10.52158/jacost.v5i1.809

Rafif, M. F., Patria, A. S., & Surabaya, U. N. (2021). Perancangan Mobile Game. ANDHAPURA: Jurnal Desain Komunikasi Visual & Multimedia, 07(02), 268–281. https://doi.org/10.33633/andharupa.v7i2.3966

Shah, S. A. A., Masood, M. A., & Yasin, A. (2022). Dark web: E-commerce information extraction based on name entity recognition using bidirectional-LSTM. IEEE Access, 10, 99633-99645. https://doi.org/10.1109/ACCESS.2022.3206539

Sujjada, A. (2024). Prediksi Harga Bitcoin Menggunakan Algoritma Long ShortTerm Memory. JURNAL INOVTEK POLBENG, 9, 450–459. https://doi.org/10.35314/isi.v9i1.4247

Triani, A., & Mulyadi, H. (2019). Peningkatan Pengalaman Keuangan Remaja Untuk Literasi Keuangan Syariah Yang Lebih Baik. I-Finance: A Research Journal on Islamic Finance, 5(1), 9–22. https://doi.org/10.19109/ifinace.v5i1.3714

Ulum, M. T., & Yuhertiana, I. (2024). Studi Literatur: Relevansi Perilaku Keuangan Dan Nilai-Nilai Bela Negara Pada Generasi Z. Journal of Economic, Bussines and Accounting (COSTING), 7(4), 7728-7738. https://doi.org/10.31539/costing.v7i4.10075

Venia, M., Marzuki, F., & Yuliniar. (2021). Analisis Faktor yang Mempengaruhi Perilaku Impulse Buying (Studi Kasus pada Generasi Z Pengguna E-commerce ). Korelasi Riset Nasional Ekonomi, Manajemen, Dan Akuntansi, 2(1), 929–941.

Widiantari, K. S., Mahadewi, I. A. G. D. F., Suidarma, I. M., & Arlita, I. G. A. D. (2023). Pengaruh Literasi Keuangan, E-Money Dan Gaya Hidup Terhadap Perilaku Keuangan Generasi Z Pada Cashless Society. Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA), 7(3), 429–447. https://doi.org/10.31955/mea.v7i3.2802

Yu, L., Zhou, R., Chen, R., & Lai, K. K. (2022). Missing Data Preprocessing in Credit Classification: One-Hot Encoding or Imputation? Emerging Markets Finance and Trade, 58(2), 472–482. https://doi.org/10.1080/1540496X.2020.1825935

Downloads

Published

2024-12-19