Sistem Identifikasi Kualitas Biji Kopi Robusta berbasis Image Processing dengan Support Vector Machine
DOI:
https://doi.org/10.29408/edumatic.v8i2.28008Keywords:
coffee, identification, potential, product, svmAbstract
Pagar Alam is a region producing robusta coffee, a superior coffee variety in Indonesia with a strong taste and high caffeine quality. However, the selection process for robusta coffee beans in Pagar Alam is still traditional. It needs to be more consistent, impacting product quality, causing economic losses, and damaging the region's reputation as a producer of quality robusta coffee. Therefore, innovation is needed in the coffee bean selection process to improve the quality and competitiveness of robusta coffee from Pagar Alam. This study aims to build an image processing-based identification system for the quality of Pagar Alam robusta coffee beans. Identification is made by extracting visual features of coffee beans, including colour, shape, and size. Implementation of the Software Life Development Cycle (SDLC) through the stages of analysis, design, implementation, testing, and maintenance as a method of system development and identification process using a Support Vector Machine (SVM) with a kernel radial basis function (RBF) to extract visual features such as colour, shape, and size of coffee beans. In the system feasibility test, a percentage of 80% was obtained, a dataset of 170 data with a division ratio of 80:20, accuracy reached 91.17%, precision 100%, recall 91.17%, and F1-score 94.79%. These findings show great potential in improving the efficiency of coffee bean selection and the quality of Pagar Alam robusta coffee bean products by utilizing the support vector machine (SVM) algorithm.
References
Anggraeni, A. W., Fitrani, A. S., & Eviyanti, A. (2024). Penerapan Algoritma Support Vector Machine untuk Memprediksi Tingkat Partisipasi Pemilu terhadap Kualitas Pendidikan. Edumatic: Jurnal Pendidikan Informatika, 8(1), 21-27. https://doi.org/10.29408/edumatic.v8i1.24838
Apriani, H., Jaman, J. H., & Adam, R. I. (2022). Optimasi SVM menggunakan algoritme grid search untuk identifikasi citra biji kopi robusta berdasarkan circularity dan eccentricity. Jurnal Teknologi dan Sistem Komputer, 10(1), 12-19. https://doi.org/10.14710/jtsiskom.2021.13807
As' Ad, M. H., & Aji, J. M. M. (2020). Faktor yang mempengaruhi preferensi konsumen kedai kopi modern di Bondowoso. JSEP (Journal of Social and Agricultural Economics), 13(2), 182-199. https://doi.org/10.19184/jsep.v13i2.16441
Ayuningtyas, N. (2022). Analisis Efisiensi Produksi Usahatani Kopi Robusta:(Studi Kasus: Kelurahan Karang Dalo, Kecamatan Dempo Tengah, Kota Pagar Alam). Bekasi Development Innovation Journal, 1(2), 75-87.
Baqueta, M. R., Coqueiro, A., Março, P. H., & Valderrama, P. (2021). Multivariate classification for the direct determination of cup profile in coffee blends via handheld near-infrared spectroscopy. Talanta, 222, 121526. https://doi.org/10.1016/j.talanta.2020.121526
Chandra, D., & Sembiring, S. (2024). Meningkatkan Efisiensi Prmosesan Citra Untuk Klasifikasi Kualitas Biji Jagung Berbasis Tekstur. Jurnal Ilmiah Multidisiplin Komputer, 1(2), 60–73.
Dewi, D. C. (2024). The Role of Promotion in Increasing Sales of Red Coffee Cap Lesung SMEs New Hope Built at BDC Pagar Alam City. Jurnal Indonesia: Manajemen Informatika dan Komunikasi, 5(3), 2243-2252. https://doi.org/10.35870/jimik.v5i3.905
Dirga, D. (2023). Inovasi Produk Kopi Robusta Wine Sebagai Daya Tarik Wisata, Studi Kasus Di Desa Wisata Senaru, Kecamatan Bayan, Kabupaten Lombok Utara. Jurnal Media Bina Ilmiah, 17(7), 1465–1486.
Fadjeri, A. (2024). Identifikasi Teks dari Citra Menggunakan Optical Character Recognition. Jurnal Ilmiah SINUS, 22(2), 13-24. https://doi.org/10.30646/sinus.v22i2.819
Hafifah, Y., Muchtar, K., Ahmadiar, A., & Esabella, S. (2022). Perbandingan Kinerja Deep Learning Dalam Pendeteksian Kerusakan Biji Kopi. JURIKOM (Jurnal Riset Komputer), 9(6), 1928-1932. https://doi.org/10.30865/jurikom.v9i6.5151
Hidayat, W., Ardiansyah, M., & Setyanto, A. (2021). Pengaruh Algoritma ADASYN dan SMOTE terhadap Performa Support Vector Machine pada Ketidakseimbangan Dataset Airbnb. Edumatic: Jurnal Pendidikan Informatika, 5(1), 11-20. https://doi.org/10.29408/edumatic.v5i1.3125
Hikmah, A., Rais, M., Sukainah, A., & Putra, R. (2024). Isolasi dan Identifikasi Khamir Indigenus Pada Fermentasi Spontan Biji Kopi Robusta (Coffea Canephora) di Kabupaten Bantaeng. Jurnal Ilmiah Mahasiswa Teknologi Pertanian, 1(1), 1–11.
Irmeilyana, I., Ngudiantoro, N., & Maiyanti, S. I. (2023). Application of Two Groups Analysis and Cluster Analysis on Comparison of Characteristics of Pagaralam Coffee Farmers Categories. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(1), 0101–0112. https://doi.org/10.30598/barekengvol17iss1pp0101-0112
Maleachi, S. (2024). Analisis Pengelolaan Panen dan Pasca Panen Kopi Sebagai Faktor – Faktor yang Mempengaruhi Kualitas Biji Kopi Robusta di Kota Pagar Alam. Jurnal Global Ilmiah, 1(7), 482–488. https://doi.org/10.55324/jgi.v1i7.67
Novita, M. N., Hasanuddin, T., & Trully, D. (2023). Persepsi Petani Terhadap Sistem Sambung (Grafting) Dan Produksi Usahatani Kopi Robusta Di Kecamatan Dempo Utara Kota Pagaralam Provinsi Sumatera Selatan. Jurnal Ekonomi Pertanian Dan Agribisnis, 7(3), 940–949. https://doi.org/10.21776/ub.jepa.2023.007.03.3
Putri, D. A., Munawar, A. A., & Nasution, I. S. (2022). Klasifikasi Mutu Fisik Biji Kopi Beras Robusta menggunakan Pengolahan Citra Digital. Jurnal Ilmiah Mahasiswa Pertanian, 7(2), 490–498. https://doi.org/10.17969/jimfp.v7i2.19797
Rohman, A. F. R., & Bhakti, H. D. (2024). Perancangan Deteksi Wajah pada Aplikasi Berbasis React Native Menggunakan Metode Haar Cascade. Jurnal Informatika dan Teknologi Pendidikan, 4(1), 32-40.
Rosa, Y., & Riyanto, R. (2022). Potential of Robusta Coffee Bean Extract (Coffea canephora) Peaberry Roasted and Green Bean Pagar Alam City against the Growth of Candida albicans Fungus. Jurnal Biologi Tropis, 22(4), 1108–1114. https://doi.org/10.29303/jbt.v22i4.4311
Rusman, J., Haryati, B. Z., & Michael, A. (2023). Optimisasi Hiperparameter Tuning pada Metode Support Vector Machine untuk Klasifikasi Tingkat Kematangan Buah Kopi. Jurnal Komputer Dan Informatika, 11(2), 195–202. https://doi.org/10.35508/jicon.v11i2.12571
Setiawan, A., & Suryono, R. R. (2024). Analisis Sentimen Ibu Kota Nusantara menggunakan Algoritma Support Vector Machine dan Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 8(1), 183-192. https://doi.org/10.29408/edumatic.v8i1.25667
Sihombing, H. A., & Buulolo, I. C. (2021). Pengenalan Buah Kopi Berdasarkan Parameter Warna Menggunakan Algoritma Backpropagation Dan Algoritma Support Vector Machine (Svm). Seminastika, 3(1), 26–32. https://doi.org/10.47002/seminastika.v3i1.234
Swarga, L. A., Setyadjit, K., & Ridhoi, A. (2024). Klasifikasi Jenis Biji Kopi menggunakan Algoritma LDA dan NN. SinarFe7, 6(1), 7–11.
Widyasari, A., Warkoyo., & Mujianto. (2023). Pengaruh Ukuran Biji Kopi Robusta pada Kualitas Citarasa Kopi (The Effect of Robusta Coffee Bean Size on Coffee Taste Quality). Jurnal Agro Industri Perkebunan, 11(1), 1–14. https://doi.org/https://doi.org/10.25181/jaip.v11i1.2602
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Debi Gusmaliza, Siti Aminah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.