Algoritma SARIMA sebagai Pendukung Strategi Peramalan HPS dalam Persaingan Tender di LPSE Indonesia
DOI:
https://doi.org/10.29408/edumatic.v8i2.28009Keywords:
forecasting, hps value prediction, sarima algorithm, tender, web scrapingAbstract
Tender in Indonesia's Electronic Procurement Service (LPSE) is the procurement of goods/services in the form of public facilities and managed by the provider with the lowest estimated price (HPS) value during the reverse auction process. The fluctuating value of HPS and the tight competition of competitors make winning for providers increasingly difficult and competitive. The purpose of this research is to create a forecasting model of the HPS value of tenders in LPSE Indonesia using the Seasonal Autoregressive Integrated Moving Average (SARIMA) algorithm. This type of research is experimental research to determine the order of the best SARIMA model. The research variables used are tender publication date and HPS value as much as 747,098 tender data from historical data from web scraping of the LPSE website with a withdrawal date range of January 7, 2013 to November 30, 2022. The data analysis technique uses data exploration analysis to determine the characteristics of the data distribution and then the implementation of the SARIMA forecasting algorithm. The results of this study show that the SARIMA((5,1,1),(4,1,1,7)) model is the optimal model with an evaluation value of mean absolute percentage error (MAPE) percentage error value of 33.56% which in relation to LPSE can provide a reasonable forecasting value. The results of forecasting for the next 30 days show that the distribution of HPS values is in the range of 680 million - 700 million rupiah in the period December 2022.
References
Abimantara, C. G., & Purwito, A. (2019). Analisa Kegagalan Kontraktor Dalam Proses Tender Sistem E-Procurement Pada Proyek Pemkot Surabaya Tahun 2018. Jurnal Rekayasa Dan Manajemen Konstruksi, 7(1), 33–41. https://doi.org/10.30742/axial.v7i1.706
Aksan, I., & Nurfadilah, K. (2020). Aplikasi Metode Arima Box-Jenkins Untuk Meramalkan Penggunaan Harian Data Seluler. JOMTA Journal of Mathematics: Theory and Applications, 2(1), 1–10. https://doi.org/10.31605/jomta.v2i1.749
Almahdali, H., Ismail, I., & Engka, R. (2022). Analisis Pelaksanaan Pengadaan Barang/Jasa Secara Elektronik (E-Procurement) pada Pemerintah Kabupaten Wajo. Jurnal Ada Na Gau: Public Administration, 3(1), 1031–1042.
Ariyanti, V. P., & Yusnitasari, T. (2023). Comparison of Arima and Sarima for forecasting crude oil prices. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(2), 405–413. https://doi.org/10.29207/resti.v7i2.4895
Arta, A., Almadevi, M., Ardine Puspitasari, P., & Septiani Pontoh, R. (2022). Peramalan Kandungan CO (Karbon Monoksida) DKI JAKARTA dengan Menggunakan Metode Arima. Seminar Nasional Statistika Aktuaria I, 1–10.
Djufri, M. (2020). Penerapan Teknik Web Scraping Untuk Penggalian Potensi Pajak (Studi Kasus Pada Online Market Place Tokopedia, Shopee Dan Bukalapak). JURNAL BPPK , 13(5), 65–75. https://doi.org/10.48108/jurnalbppk.v13i2.636
Fauziah, A. N., Sadida, H. Q., Rizki, M. I., & Pontoh, R. S. (2021). Peramalan Harga Beras Premium di Tingkat Penggilingan di Indonesia dengan Metode Pemodelan ARCH-GARCH. Seminar Nasional Statistika Online, 10–20.
Ferdiansyah, A., & Nadjib, M. F. (2022). Rancangan Pre-Procurement, Procurement Process, Dan Pos-Recurement Untuk Memenangkan Tender Di Instansi Pemerintah Atau Perusahaan Swasta. Prosiding The 13th Industrial Research Workshop and National Seminar, 13–14.
Haryadi, R., & Meilidhani, R. M. (2023). Penentuan Jumlah Produksi Dalam Industri Digital Printing Yang Berkhusus Pada Percetakan Banner Berdasarkan Data Persediaan Dan Jumlah Permintaan Menggunakan Metode Fuzzy Sugeno. Journal Computer, Technology, and Informations System, 2(2), 49–56.
Hasibuan, L. H., Musthofa, S., Putri, D. M., & Jannah, M. (2023). Comparison Of Seasonal Time Series Forecasting Using Sarima And Holt Winter’S Exponential Smoothing (Case Study: West Sumatra Export Data). BAREKENG: Journal of Mathematics and Its Applications, 12(3), 1773–1784. https://doi.org/10.30598/barekengvol17iss3pp1773-1784
Ignasius, M., & Lamabelawa, J. (2018). Perbandingan Interpolasi Dan Ekstrapolasi Newton Untuk Prediksidata Time Series. HOAQ: Jurnal Teknologi Informasi, 10(12), 73–80. https://doi.org/10.52972/hoaq.vol10no2.p73-80
Innayah, A. N. (2024). Utilizing The Sarima Model And Support Vector Regression To Forecast Monthly Rainfall In Bandung City. Jurnal Ilmiah Teknologi Infomasi Terapan, 10(2), 100–110. https://doi.org/10.33197/jitter.vol10.iss2.2024.1663
Liu, J., Zhao, Z., Zhong, Y., Zhao, C., & Zhang, G. (2022). Prediction of the dissolved gas concentration in power transformer oil based on SARIMA model. Energy Reports, 8(10), 1360–1367. https://doi.org/10.1016/j.egyr.2022.03.020
Noureen, S., Atique, S., Roy, V., & Bayne, S. (2019). Analysis and application of seasonal ARIMA model in Energy Demand Forecasting: A case study of small scale agricultural load. 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), 521–524. https://doi.org/10.1109/MWSCAS.2019.8885349
Qonita, A., Pertiwi, A. G., & Widiyaningtyas, T. (2017). Prediction of Rupiah Against US Dollar by Using ARIMA. 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 1–5, IEEE. https://doi.org/10.1109/EECSI.2017.8239205
Ristijana, D. K., Dirgantoro, B., & Ruriawan, M. F. (2021). Implementasi Metode Proteksi Situs Web Dari Web Scraping. E-Proceeding of Engineering, 8(5), 210–217.
Safira, A. N., Warsito, B., & Rusgiyono, A. (2022). Analisis Support Vector Regression (Svr) Dengan Algoritma Grid Search Time Series Cross Validation Untuk Prediksi Jumlah Kasus Terkonfirmasi Covid-19 Di Indonesia. Jurnal Gaussian, 11(4), 512–521. https://doi.org/10.14710/j.gauss.11.4.512-521
Satria, A., Nugraha, P., Zakaria, S., & Lesmana, A. C. (2021). Implementasi E-Procurement Dalam Proses Pengadaan Barang/Jasa Pada Lembaga Layanan Pengadaan Secara Elektronik (LPSE) Kota Bogor Tahun 2020. Jurnal Administrasi Pemerintahan (Janitra), 1(2), 73–87. https://doi.org/10.24198/janitra.v1i2.38241
Sirisha, U. M., Belavagi, M. C., & Attigeri, G. (2022). Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison. IEEE Access, 10(1), 124715–124727. https://doi.org/10.1109/ACCESS.2022.3224938
Subagia, I. N., Lestari, I. G. A. A. I., & Praditha, P. F. (2020). Analisis Strategi Penawaran Kontraktor Untuk Memenangkan Tender Online Di Denpasar. Ganec Swara, 14(2), 738–745.
Susanto, V. Y. (2021). Nilai Pengadaan Barang dan Jasa Pemerintah pada 2021 Mencapai Rp 1.214 Triliun. Jurnal Penelitian Pendidikan Indonesia, 8(3), 668–675.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Daud Fernando, Indira Syawanodya, Raditya Muhammad
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.
This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.