Sistem Cerdas Deteksi Status Gizi Anak melalui Eksplorasi Algoritma C.45 dan Forward Feature Selection

Authors

  • Alfis Arif Program Studi Teknik Informatika, Instititut Teknologi Pagar Alam,
  • Debi Gusmaliza Program Studi Teknik Informatika, Institut Teknologi Pagar Alam https://orcid.org/0009-0006-4652-7969

DOI:

https://doi.org/10.29408/edumatic.v8i2.28014

Keywords:

c.45 algorithm, child nutritional status, forward feature selection, intelligent system, prediction

Abstract

The problem of high rates of child malnutrition remains in Pagar Alam City. The lack of understanding of nutritional interventions and the limited ability of Posyandu cadres to conduct accurate nutritional assessments are the main factors. This situation makes it difficult for the community to monitor the nutritional status of children and provide appropriate nutritional intake. This research aims to create an intelligent system for detecting children's nutritional status through the exploration of C.45 algorithm and Forward Feature Selection in Pagar Alam City. This system is designed to detect children's nutritional status and provide recommendations for appropriate nutritional intake based on detection results with variables of children's weight and height. The data used amounted to 7519 data obtained from the Pagar Alam City Health Office. The model we use to build this system is waterfall with stages of planning, analysis, design, development, testing and implementation. Then the method we apply to this system is CRISP-DM and the C.45 algorithm and Forward Feature Selection technique. Our results are in the form of an intelligent system for detecting children's nutritional status, with the results of system testing using test data and training data showing 100% accuracy. In addition, black box testing also proves that the system works well as expected.

References

Adnyana, I. made B. (2019). Penerapan Feature Selection untuk Prediksi Lama Studi Mahasiswa. Jurnal Sistem Dan Informatika, 13(2), 72–76. https://doi.org/10.36929/inch.v2i1.688

Agritubella, S. M., Uthia, R., & Rosy, A. (2023). An Overview of Wasting and Stunting based on Nutritional Status Assessment for Toddlers. INCH: Journal of Infant and Child Healthcare, 2(1), 28-32. https://doi.org/10.29408/edumatic.v7i2.18620

Amri, Z., Kusrini, K., & Kusnawi, K. (2023). Prediksi Tingkat Kelulusan Mahasiswa menggunakan Algoritma Naïve Bayes, Decision Tree, ANN, KNN, dan SVM. Edumatic: Jurnal Pendidikan Informatika, 7(2), 187-196. https://doi.org/10.29408/edumatic.v7i2.18620

Ardiansyah, M., Sunyoto, A., & Luthfi, E. T. (2021). Analisis Perbandingan Akurasi Algoritma Naive Bayes dan C4.5 untuk Klasifikasi Diabtes. Edumatic: Jurnal Pendidikan Informatika, 5(2), 147-156. https://doi.org/10.29408/edumatic.v5i2.3424

Azwanti, N. (2018). Algoritma C4.5 Untuk Memprediksi Mahasiswa Yang Mengulang Mata Kuliah (Studi Kasus Di Amik Labuhan Batu). Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 9(1), 11–22. https://doi.org/10.24176/simet.v9i1.1627

Firdausia, I. N., Nugroho, B., & Yuniar Purbasari, I. (2021). Implementasi Metode Decision Tree Pada Identifikasi Status Gizi Balita. Jurnal Informatika Dan Sistem Informasi, 2(2), 204–213. https://doi.org/10.33005/jifosi.v2i2.326

Hakim, R. X., Putrawansyah, F., & Syahri, R. (2024). Penerapan Algoritma C4.5 Untuk Prediksi Anak Stunting Di Kota Pagar Alam. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 2469–2478. https://doi.org/10.36040/jati.v8i2.9301

Lailani, F. K., Yuliana, & Yulastri, A. (2022). Literature Riview : Masalah Terkait Malnutrisi: Penyebab, Akibat, dan Penanggulangannya. JGK: Jurnal Gizi Dan Kesehatan, 2(2), 129–138. https://doi.org/10.36086/jgk.v2i2.1503

Noviyanti, T. (2019). Sistem Penunjang Keputusan Dalam Penerimaan Beasiswa Ppa Menggunakan Metode Analytic Hierarchy Process (Ahp) (Studi Kasus: Universitas Gunadarma). Jurnal Ilmiah Teknologi Dan Rekayasa, 24(1), 35–45. https://doi.org/10.35760/tr.2019.v24i1.1932

Nugraha, C., Surya, P. G., Mahendra, & Surya, G. (2020). Explorasi Algoritma C4.5 Dan Forward Feature Selection Untuk Menentukan Debitur Baik Dan Debitur Bermasalah Pada Produk Kredit Tanpa Agunan (Kta). JST (Jurnal Sains Dan Teknologi), 9(1), 39–46. https://doi.org/10.23887/jst-undiksha.v9i1.24627

Prasetio, A. (2021). Simulasi Penerapan Metode Decision Tree (C4.5) Pada Penentuan Status Gizi Balita. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 4(3), 209–214. https://doi.org/10.32672/jnkti.v4i3.2983

Purwati, N. (2018). Deteksi Gizi Buruk Pada Balita Berdasarkan Indeks Antropometri Menggunakan Algoritma Naive Bayes. Jurnal Biang Lala Informatika, 6(1), 69–72.

Purwati, Pramana, P., & Aziz, R. A. (2023). Implementasi Sistem Cerdas Berbasis Ai Dalam Komunikasi Organisasi: Tantangan Dan Peluang. Jurnal Ilmiah Dinamika Sosial, 7(2), 226–235. https://doi.org/10.38043/jids.v7i2.4914

Rahmawati, I., & Mahfudz, M. K. (2018). Analisis Pengaruh Perputaran Modal Kerja, Likuiditas, Struktur Modal, Sales Growth, Struktur Aktiva, Size Terhadap Profitabilitas. Diponegoro Journal Of Management, 7(4), 1–14.

Ritonga, A. S., & Muhandhis, I. (2024). Aplikasi Berbasis Website Untuk Mendeteksi Status Gizi Balita Menggunakan Metode K-Nearest Neighbors (KNN). Journal of System and Computer Engineering (JSCE), 5(1), 44–55. https://doi.org/10.61628/jsce.v5i1.1081

Simanjuntak, D., & Sindar, A. (2019). Sistem Pakar Deteksi Gizi Buruk Balita Dengan Metode Naïve Bayes Classifier. Jurnal Inkofar, 1(2), 2581–2920. https://doi.org/10.46846/jurnalinkofar.v1i2.110

Utami, D. C., & Azizah, A. N. (2023). Hubungan Status Gizi Dengan Perkembangan Balita Usia 1-5 Tahun Di Wilayah Kerja Puskesmas Kutasari. Avicenna: Journal of Health Research, 6(1), 28-35. https://doi.org/10.36419/avicenna.v6i1.820

Yenila, F., Marfalino, H., & Defit, S. (2023). Model Analisis Machine Learning dengan Pendekatan Deep Learning dalam Penentuan Kolektabilitas. JST (Jurnal Sains Dan Teknologi), 12(2), 403–414. https://doi.org/10.23887/jstundiksha.v12i2.54035

Yunus, M., & Pratiwi, N. K. A. (2023). Prediksi Status Gizi Balita Dengan Algoritma K-Nearest Neighbor (KNN) di Puskemas Cakranegara. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 4(4), 221–231. https://doi.org/10.35746/jtim.v4i4.328

Zein, A. (2021). Kecerdasan Buatan Dalam Hal Otomatisasi Layanan. Jurnal Ilmu Komputer, 4(2), 16-25.

Zulfikar, L., Mariene Wiwin Dolang, Epi Dusra, Hamka Hamka, & Wa Ode Satriawati Saendrayani. (2023). Analisis Manajemen Kejadian Stunting pada Balita di Desa Waesamu Tahun 2023. Jurnal Medika Husada, 3(2), 21–30. https://doi.org/10.59744/jumeha.v3i2.44

Downloads

Published

2024-12-19