Peningkatan Akurasi Prediksi Curah Hujan menggunakan Gradient Boosting dan CatBoost dengan Pendekatan Voting Classifier

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i1.28988

Keywords:

catboost, gradient boosting, hyperparameter optimation, rainfall prediction, voting lassifier

Abstract

Accurate rainfall prediction is essential for agriculture, disaster mitigation, and water resource management, especially in the face of climate change impacts. This research aims to improve the accuracy of rainfall prediction using gradient boosting and CatBoost with a voting classifier approach. The data used in this study amounted to 1,461 based on weather data from BMKG Semarang City (2020-2023). The data was analyzed using the Gradient Boosting and CatBoost algorithms with a voting classifier framework. The input features include temperature (Tn, Tx, Tavg), humidity (RH_avg), rainfall (RR), length of irradiation (ss), wind speed (ff_x, ff_avg), and wind direction (ddd_x). The GridSearchCV technique was used for hyperparameter optimization. The model predicts based on rainfall intensity categories, namely no rain, light rain, moderate rain, heavy rain, and extreme rain. The results showed that the model with optimization and ensemble approach achieved 87.89% accuracy, 0.88 precision, 0.88 recall, 0.88 f1-score, and 0.8486 cohen's kappa. Meanwhile, gradient boosting and CatBoost individually produced 75.99% and 85.68% accuracy. With these data input features, the model is able to predict extreme rainfall categories that match the actual data. This research is an important contribution to the development of early weather warning systems, disaster mitigation, and climate management.

References

Afifah, D., Chusni, A., Nahar, A. N., Sirojuddin, M. A., Fatmawati, N., Islam, I. A., & Kudus, N. (2024). Persepsi Masyarakat Nelayan Dalam Menghadapi Perubahan Iklim Studi Desa Ujung Batu Kawasan Pesisir Utara Pulau Jawa (Ditinjau Aspek Sosial Ekonomi). UTILITY: Jurnal Ilmiah Pendidikan Dan Ekonomi, 8(1), 42–58. https://doi.org/10.30599/utility.v8i1.3107

Ananda, I. K., Fanani, A. Z., Setiawan, D., & Wicaksono, D. F. (2024). Penerapan Random Oversampling dan Algoritma Boosting untuk Memprediksi Kualitas Buah Jeruk. Edumatic: Jurnal Pendidikan Informatika, 8(1), 282-289. https://doi.org/10.29408/edumatic.v8i1.25836

Azhari, D. M., & Hidajat, M. S. (2024). Klasifikasi Stunting pada Balita menggunakan Algortima Gradient Bossting Clasifier. Edumatic: Jurnal Pendidikan Informatika, 8(2), 507-515. https://doi.org/10.29408/edumatic.v8i2.27502

Azhari, R., Amanah, S., Fatchiya, A., & Kinseng, R. A. (2023). The Role of Agricultural Extension, Communication, and Farmer Organizations in Building Resilience of Smallholder Farmers. Forum Penelitian Agro Ekonomi, 41(1), 45–63.

Bagas, M., Darmawan, A., Dewanta, F., & Astuti, S. (2023). Analisis Perbandingan Algoritma Decision Tree, Random Forest, dan Naïve Bayes untuk Prediksi Banjir di Desa Dayeuhkolot Comparative Analysis of Decision Tree, Random Forest, and Naïve Bayes Algorithm for Flood Prediction at Dayeuhkolot Village. TELKA, 9(1), 52–61. https://doi.org/10.15575/telka.v9n1.52-61

Hastuti, N. T., & Budiman, F. (2024). Optimasi Klasifikasi Stunting Balita dengan Teknik Boosting pada Decision Tree. Edumatic: Jurnal Pendidikan Informatika, 8(2), 655-664. https://doi.org/10.29408/edumatic.v8i2.27913

Hayu, C. S., Aprilia, C., Kamila Putri, U., Leana Putri, V., Alfi Hidayat, A., Ansori, N., & Negeri Semarang, U. (2024). Analisis Pola Debit Hujan terhadap Terjadinya Banjir di Daerah Aliran Kali Es Sawah Besar Pada 12 Februari 2024. Jurnal Implementasi, 4(1), 65–78.

Hazizah, C. Y., & Widiyaningtyas, T. (2024). Analisis Metode Collaborative Filtering menggunakan KNN dan SVD++ untuk Rekomendasi Produk E-commerce Tokopedia. Edumatic: Jurnal Pendidikan Informatika, 8(2), 595–604. https://doi.org/10.29408/edumatic.v8i2.27793

Husaini, A., Hoeronis, I., Lumana, H. H., & Puspareni, L. D. (2023). Early Detection of Stunting in Toddlers Based on Ensemble Machine Learning in Purbaratu Tasikmalaya. Jurnal Sistem Dan Teknologi Informasi (JustIN), 11(3), 487–495. https://doi.org/10.26418/justin.v11i3.66465

Irfannandhy, R., Handoko, L. B., & Ariyanto, N. (2024). Analisis Performa Model Random Forest dan CatBoost dengan Teknik SMOTE dalam Prediksi Risiko Diabetes. Edumatic: Jurnal Pendidikan Informatika, 8(2), 714–723. https://doi.org/10.29408/edumatic.v8i2.27990

Istianto, A. F., Hadiana, A. I., & Umbara, F. R. (2024). Prediksi Curah Hujan Menggunakan Metode Categorical Boosting (CATBOOST). JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2930–2937. https://doi.org/10.36040/jati.v7i4.7304

Jasman, T. Z., Fadhlullah, M. A., Pratama, A. L., & Rismayani, R. (2022). Analisis Algoritma Gradient Boosting, Adaboost dan Catboost dalam Klasifikasi Kualitas Air. Jurnal Teknik Informatika Dan Sistem Informasi, 8(2), 392–402. https://doi.org/10.28932/jutisi.v8i2.4906

Kusuma, A. C., Pratiwi, N. W. W., Humairah, N. A., & Yulistio, M. R. (2022). Analisis Dampak Kebijakan Populis Terhadap Keputusan Gubernur DKI Jakarta. Jurnal Analisis Hukum, 5(1), 90–105. https://doi.org/10.38043/jah.v5i1.3491

Kusyanti, A. (2019). Metode Ensemble Classifier untuk Mendeteksi Jenis Attention Deficit Hyperactivity Disorder (SDHD) pada Anak Usia Dini. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 6(3), 301–308. https://doi.org/10.25126/jtiik.201961313

Mabruroh, F., & Wiyanto, A. (2023). Analisis Fenomena Perubahan Iklim Terhadap Curah Hujan Ekstrim. OPTIKA: Jurnal Pendidikan Fisika, 7(1), 94–100. https://doi.org/10.37478/optika.v7i1.2738

Pahlevi, O., Ayu, D., Wulandari, N., Rahayu, L. K., Leidiyana, H., & Handrianto, Y. (2024). Model Klasifikasi Risiko Stunting Pada Balita Menggunakan Algoritma CatBoost Classifier. Bulletin of Computer Science Research, 6(4), 414–421.

Purify, A., Teknik Elektronika Pertahanan, P., Militer, A., Kusman, A., Widodo, S., & Silitonga, F. (2024). Perubahan Iklim Dan Risiko Keamanan Nasional: Kajian Mengenai Kesiapsiagaan Pertahanan Indonesia. Jurnal Elektrosista, 12(1), 1–11.

Putri, F., & Arianto, D. B. (2024). Perbandingan Performa Random Forest Dan Gradient Boosting Dalam Prediksi Pada Dataset Customer Shopping Trends. Kohesi: Jurnal Multidisiplin Saintek, 5(10), 1–9.

Runtulalo, Y. S., & Manongga, D. H. F. (2024). Clustering Tingkat Kemiripan Curah Hujan di Indonesia Berdasarkan Provinsi Menggunakan Metode Hierarchical Clustering dan GeoMap. Progresif: Jurnal Ilmiah Komputer, 20(1), 325–336. https://doi.org/10.35889/progresif.v20i1.1583

Saputra, D. R. K., Via, Y. V., & Sihananto, A. N. (2024). Deteksi Anomali Menggunakan Ensemble Learning Dan Random Oversampling Pada Penipuan Transaksi Keuangan. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3), 2779–2788. https://doi.org/10.23960/jitet.v12i3.4910

Sari, D. P., Halim, Z., & Waseso, B. (2024). Implementasi Machine Learning untuk Deteksi Intrusi pada Jaringan Komputer. Jurnal Minfo Polgan, 13(2), 1389–1394. https://doi.org/10.33395/jmp.v13i2.14074

Sari, V. R., Firdausi, F., & Azhar, Y. (2020). Perbandingan Prediksi Kualitas Kopi Arabika dengan Menggunakan Algoritma SGD, Naive Bayes, dan Random Forest. Edumatic: Jurnal Pendidikan Informatika, 4(2), 1-9. https://doi.org/10.29408/edumatic.v4i2.2202

Suwarman, R., Riawan, E., Simanjuntak, Y. S. M., & Irawan, D. E. (2022). Kajian Perubahan Iklim di Pesisir Jakarta Berdasarkan Data Curah Hujan dan Temperatur. Buletin Oseanografi Marina, 11(1), 99–110. https://doi.org/10.14710/buloma.v11i1.42749

Usman, C. D., & Sudibyo, U. (2022). Klasifikasi Curah Hujan di Kota Semarang Menggunakan Machine Learning. Pros. Sains Dan Teknol, 1(1), 1–5.

Downloads

Published

2025-04-09

How to Cite

Fudhlatina, D., & Budiman, F. (2025). Peningkatan Akurasi Prediksi Curah Hujan menggunakan Gradient Boosting dan CatBoost dengan Pendekatan Voting Classifier. Edumatic: Jurnal Pendidikan Informatika, 9(1), 51–59. https://doi.org/10.29408/edumatic.v9i1.28988