Metode Frame Difference untuk Deteksi Gerakan Tidur Bayi berbasis Computer Vision
DOI:
https://doi.org/10.29408/edumatic.v9i1.29004Keywords:
frame differential, monitoring system, raspberry pi, computer vision, opencvAbstract
Monitoring a baby's sleep is a critical task for parents, especially when balancing household responsibilities. This study combines the MobileNet-SSD object detection model with the Frame Difference method to analyze sleep movements based on motion thresholds. The system's performance was evaluated by calculating accuracy, precision, recall, and latency, implemented on both laptop and Raspberry Pi devices, and tested using 720p and 480p resolution videos. Results showed accuracy of 82%, precision of 81%, and recall of 92% at 720p, and accuracy of 77%, precision of 80%, and recall of 86% at 480p. However, the Raspberry Pi exhibited a latency of 400ms, 10 times higher than the laptop's 41.28ms latency. Compared to optical flow, this method offers ease of use, and lower computational complexity. The results of this study highlight the impact of resolution on motion detection accuracy, where higher-resolution videos yield more optimal performance. Limitations under low-light conditions suggest potential improvements using deep learning techniques like YOLO and Mediapipe to detect eye conditions. This research contributes to the development of computer vision where the frame differential and object detection methods are proven to provide a fairly high level of accuracy in detecting movement.
References
Aldridge, G., Tomaselli, A., Nowell, C., Reupert, A., Jorm, A., & Hui Yap, M. B. (2024). Engaging Parents in Technology-Assisted Interventions for Childhood Adversity: Systematic Review. Journal of Medical Internet Research, 26(1), 1–30. https://doi.org/10.2196/43994
Anthony, F. Z., Ali, S., Ali, M., Zahra, F. D., & Masitah, I. (2024). Rancang Bangun Tempat Tidur Bayi Berbasis Computer Vision untuk Membantu Sleep Training pada Bayi. Applied Engineering, Innovation, and Technology, 1(1), 14–22. https://doi.org/10.62777/aeit.v1i1.14
Apridiansyah, Y., Wijaya, A., Toyib, R., & Setiawan, A. (2024). Pengolahan Citra Berbasis Video Proccesing dengan Metode Frame Difference untuk Deteksi Gerak. Journal of Applied Computer Science and Technology, 5(1), 81-89. https://doi.org/10.52158/jacost.v5i1.790
Azhari, D. M., & Hidajat, M. S. (2024). Klasifikasi Stunting pada Balita menggunakan Algortima Gradient Bossting Clasifier. Edumatic: Jurnal Pendidikan Informatika, 8(2), 507-515. https://doi.org/10.29408/edumatic.v8i2.27502
Barrett, S., Barlow, J., Cann, H., Pease, A., Shiells, K., Woodman, J., & McGovern, R. (2024). Parental decision making about safer sleep practices: A qualitative study of the perspectives of families with additional health and social care needs. PLoS ONE, 19(3 March), 1–17. https://doi.org/10.1371/journal.pone.0298383
Beňo, L., Kučera, E., & Bašista, M. (2024). Smart Sleep Monitoring: An Integrated Application for Tracking and Analyzing Babies’ Sleep—BabyCare. Electronics (Switzerland), 13(21). https://doi.org/10.3390/electronics13214210
Chen, B., & Sun, R. (2021). Research on improvement of background modeling and detection method based on frame difference. Journal of Physics: Conference Series, 2035(1). https://doi.org/10.1088/1742-6596/2035/1/012025
Duong, M.-T., Lee, S., & Hong, M.-C. (2024). Learning to Concurrently Brighten and Mitigate Deterioration in Low-Light Images. IEEE Access, 12, 132891-132903. https://doi.org/10.1109/access.2024.3457514
Hendrizal, S. (2023). Penentuan Region Of Interest (ROI) Untuk Menghitung Jumlah Kendaraan Pada Jalan Raya Menggunakan Frame Substratcion. Jurnal Komputer Teknologi Informasi dan Sistem Informasi (JUKTISI), 2(2), 455-460. https://doi.org/10.62712/juktisi.v2i2.139
Hotur, V. P., Abhishek, P., Chethan, R., & Bhatta, A. (2021, June). Internet of things-based baby monitoring system for smart cradle. In 2021 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), 265-270. Bangalore, India: IEEE. https://doi.org/10.1109/ICDI3C53598.2021.00060
Irawan, B., Yulhendri, Y., Kartini, K., Anwar, N., Tjahjojo, B., & Sundari Meganingrum, A. (2022). Design And Development Of A Baby Sleep Monitoring System Based On Internet Of Things (Iot). International Journal of Science, Technology & Management, 3(4), 835–844. https://doi.org/10.46729/ijstm.v3i4.541
Khan, D., Waqas, M., Tahir, M., Islam, S. U., Amin, M., Ishtiaq, A., & Jan, L. (2023). Revolutionizing Real-Time Object Detection: YOLO and MobileNet SSD Integration. Journal of Computing & Biomedical Informatics, 6(01), 41-49.
Khan, T. (2021). An intelligent baby monitor with automatic sleeping posture detection and notification. Ai, 2(2), 290-306. https://doi.org/10.3390/ai2020018
Leo, M., Bernava, G. M., Carcagnì, P., & Distante, C. (2022). Video-Based Automatic Baby Motion Analysis for Early Neurological Disorder Diagnosis: State of the Art and Future Directions. Sensors, 22(3). https://doi.org/10.3390/s22030866
Meena, E. M., & Ramesh, D. . (2024). Smart Baby Monitoring System Using Yolo V8 Algorithm. Interantional Journal of Scientific Research in Engineering and Management, 08(07), 1–16. https://doi.org/10.55041/ijsrem36698
Miranto, A. (2024). Real Time Object Detection Menggunakan Mobilenet-SSD pada Sistem Keamanan Ruangan dengan Bot Telegram Sebagai Notifikasi User. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), 13(1), 211–216. https://doi.org/10.24843/JLK.2024.v13.i01.p21
Rahim, A., Maqbool, A., & Rana, T. (2021). Monitoring social distancing under various low light conditions with deep learning and a single motionless time of flight camera. PLoS ONE, 16(2), 1–19. https://doi.org/10.1371/journal.pone.0247440
Rahmawati, M., Ruslan, A., & Bandarsyah, D. (2021). The Era of Society 5.0 as the unification of humans and technology: A literature review on materialism and existentialism. Jurnal Sosiologi Dialektika, 16(2), 151-162. https://doi.org/10.20473/jsd.v16i2.2021.151-162
Sari, E. H. (2022). Sistem Tracking Multi Object Yang Bergerak Di Jalan Raya Dengan Metode Frame Difference Dan Edge Detection. Jurnal Impresi Indonesia, 1(9), 994-1001. https://doi.org/10.36418/jii.v1i9.456
Singh, M. N. (2021). Inroad of Digital Technology in Education: Age of Digital Classroom. Higher Education for the Future, 8(1), 20–30. https://doi.org/10.1177/2347631120980272
Thopate, K., Gawade, M., Savale, V., Cholke, A., & Musale, P. (2023). Smart Cradle: A Technology-Enabled Solution for Safer and Better Infant Sleep. International Journal on Recent and Innovation Trends in Computing and Communication, 11(7), 223–228. https://doi.org/10.17762/ijritcc.v11i7.7849
Yan, Y., Guo, Q., He, W., He, P., Chiu, G., & Allebach, J. P. (2022). Motion Detection In a Color Video Sequence with an Application to Monitoring a Baby. IS and T International Symposium on Electronic Imaging Science and Technology, 34(15), 1–5. https://doi.org/10.2352/EI.2022.34.15.COLOR-234
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Haffas Zikri Ariyandi, Muis Muhtadi, Dodik Dwi Andreanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.