Analisis Sentimen berbasis Deep Learning Terhadap Kesetaraan Gender di Bidang STEM: Perspektif dan Implikasinya

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i1.29071

Keywords:

sentiment analysis, deep learning, gender equality, social media, stem

Abstract

Women's participation in Science, Technology, Engineering, and Mathematics (STEM) is still low due to discrimination, gender stereotypes, and lack of access to equal career opportunities. This research analyzes public sentiment about gender equality in STEM fields using the Knowledge Discovery in Database (KDD) approach with the Long Short-Term Memory (LSTM) algorithm. The data consists of 1,200 tweets (2018-2024) collected through web crawling and processed using KDD techniques such as preprocessing, transformation, data mining and evaluation. The resulting LSTM model showed 86.25% accuracy, 88.18% precision, 82.20% recall, and 85.00% F1-score. Sentiment analysis showed support and appreciation for women in STEM (positive sentiment) and criticism of gender discrimination and stereotypes (negative sentiment). This study faced challenges in the form of data imbalance and the model's difficulty in understanding the Indonesian context. Our findings confirm the importance of policies that support gender equality and inclusive work environments. This research is expected to improve people's perception of gender equality and increase the representation of women in STEM fields, especially in Indonesia.

References

Amriyati, A., Nurbaiti, S., Adiasih, N., Septiyani, S., Budhianti, M. I., Suliantari, A., & Nainggolan, F. L. (2023). Perlindungan Pekerja Perempuan Dalam Kebijakan Ramah Keluarga Di Tempat Kerja: Sosialisasi Pada Serikat Pekerja. Jurnal Abdimas Bina Bangsa, 4(2), 1312-1322.

Arsi, P., & Waluyo, R. (2021). Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 8(1), 147–156. https://doi.org/10.25126/jtiik.0813944

Azrul, A., Purnamasari, A. I., & Ali, I. (2024). Analisis Sentimen Pengguna Twitter Terhadap Perkembangan Artificial Intelligence Dengan Penerapan Algoritma Long Short-Term Memory (LSTM). Jurnal Mahasiswa Teknik Informatika, 8(1), 413–421. https://doi.org/10.36040/jati.v8i1.8416

Cahyadi, R., Damayanti, A., & Aryadani, D. (2020). Recurrent Neural Network (RNN) Dengan Long Short Term Memory (LSTM) Untuk Analisis Sentimen Data Instagram. Jurnal Informatika Dan Komputer, 5(1), 1–9.

Fouad, S., & Alkooheji, E. (2023, February). Sentiment analysis for women in stem using twitter and transfer learning models. The 7th international conference on semantic computing (ICSC), 227-234. Laguna Hills, CA, USA: IEEE. https://doi.org/10.1109/ICSC56153.2023.00045

Hasiholan, A., Cholissodin, I., & Yudistira, N. (2022). Analisis Sentimen Tweet Covid-19 Varian Omicron pada Platform Media Sosial Twitter menggunakan Metode LSTM berbasis Multi Fungsi Aktivasi dan GLOVE. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (JPTIIK), 6(10), 4653–4661.

Isnain, A. R., Sulistiani, H., Hurohman, B. M., Nurkholis, A., & Styawati. (2022). Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen. Junal Edukasi Dan Penelitian Informatika (JEPIN), 8(2), 299–303. https://doi.org/10.26418/jp.v8i2.54704

Lidinillah, E. R., Rohana, T., & Juwita, A. R. (2023). Analisis sentimen Twitter terhadap Steam menggunakan algoritma logistic regression dan support vector machine. Teknosains: Jurnal Sains, Teknologi Dan Informatika, 10(2), 154–164. https://doi.org/10.37373/tekno.v10i2.440

Meoli, A., Piva, E., & Righi, H. (2024). Meoli, A., Piva, E., & Righi, H. (2024). Missing women in STEM occupations: The impact of university education on the gender gap in graduates' transition to work. Research Policy, 53(8), 1–16. https://doi.org/10.1016/j.respol.2024.105072

Naufal, H. (2022). Skripsi Analisis Sentimen Masyarakat Terhadap Vaksin Covid-19 Menggunakan Metode Recurrent Neural Network Dengan Long Short-Term Memory [Thesis (Skripsi), Universitas Pakuan]. http://eprints.unpak.ac.id/id/eprint/2696

Pane, O. O., Sihombing, S., Simbolon, D., Zalukhu, D., & Lumbantobing, R. (2024). Kesetaraan Gender. Jurnal Ilmu Hukum, Sosial, Dan Humaniora, 2(6), 298–7304.

Rini, R. Y., Mutaqin, M. F. T., & Fajari, L. E. W. (2022). Implementasi STEAM dalam Mengkonstruksi Kesetaraan Gender pada Anak Usia Dini. Jurnal Obsesi: Jurnal Pendidikan Anak Usia Dini, 6(6), 6661-6674. https://doi.org/10.31004/obsesi.v6i6.3436

Rumaisa, F., Puspitarani, Y., Rosita, A., Zakiah, A., & Violina, S. (2021). Penerapan Natural Language Processing (NLP) di bidang pendidikan. Jurnal Inovasi Masyarakat, 1(3), 232-235. https://doi.org/10.33197/jim.vol1.iss3.2021.799

Sedana, N. M. K., Wijaya, I. N. S. W., & Arthana, I. K. R. (2024). Analisis Sentimen Berbahasa Inggris Dengan Metode Lstm Studi Kasus Berita Online Pariwisata Bali. Jurnal Teknologi Informasi dan Ilmu Komputer, 11(6), 1325-1334. https://doi.org/10.25126/jtiik.1168792

Sudirman, F. A., & Susilawaty, F. T. (2022). Kesetaraan Gender Dalam Tujuan Pembangunan Berkelanjutan (Sdgs): Suatu Reviuw Literatur Sistematis. Journal Publicuho, 5(4), 995-1010. https://doi.org/10.35817/publicuho.v5i4.41

Syah, R. I., Hoiriyah, H., & Walid, M. (2023). Analisis Sentimen Pengguna Media Sosial Terhadap Aplikasi M-Health Peduli Lindungi Dengan Metode Lexicon Based Dan Naïve Bayes. Indonesian Journal of Business Intelligence (IJUBI), 6(1) 43–54. https://doi.org/10.21927/ijubi.v6i1.3275

Wahyuni, W. (2022). Analisis Sentimen terhadap Opini Feminisme Menggunakan Metode Naive Bayes. Jurnal Informatika Ekonomi Bisnis, 148-153. https://doi.org/10.37034/infeb.v4i4.162

Yazidi, M., Ramdani, R., & Rifai, M. (2023). Perbandingan Kebijakan Perspektif Kesetaraan Gender Indonesia dan Thailand Partisipasi Masyarakat Dalam Kesetaraan Gender Untuk Membuat Perspektif Kebijakan Pemerintahan di Indonesia dan Thailand. Innovative: Journal Of Social Science Research, 3(5), 3167-3178.

Yuniarossy, B. A., Hindrayani, K. M., & Damaliana, A. T. (2024). Analisis Sentimen Terhadap Isu Feminisme Di Twitter Menggunakan Model Convolutional Neural Network (CNN). Jurnal Ilmiah Pendidikan Matematika Dan Statistika, 5(10), 477–491. https://doi.org/https://doi.org/10.46306/lb.v5i1.585

Zharifa, A. H. A., & Ujianto, E. I. H. (2024). Analisis Sentimen Publik di Twitter Pasca Debat Kelima Pilpres 2024 dengan Naive Bayes. Edumatic: Jurnal Pendidikan Informatika, 8(2), 754-763. https://doi.org/10.29408/edumatic.v8i2.28048

Downloads

Published

2025-04-11

How to Cite

Mariam, S., & Nurhaida, I. (2025). Analisis Sentimen berbasis Deep Learning Terhadap Kesetaraan Gender di Bidang STEM: Perspektif dan Implikasinya. Edumatic: Jurnal Pendidikan Informatika, 9(1), 69–78. https://doi.org/10.29408/edumatic.v9i1.29071