Aplikasi Artificial intelligence untuk Klasifikasi Lengkungan Kaki: Solusi berbasis Radiografi

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i1.29098

Keywords:

x-ray imaging, flat foot, foot arch identification, tensorflow lite, yolov8

Abstract

Identifying foot arch types is crucial for maintaining health and comfort. Flat foot arches can cause pain and discomfort, potentially interfering with activities such as sports. This research aims to develop an Artificial intelligence (AI)-based application to detect normal and flat foot arch types through X-ray images. The YOLOv8 model with bounding box is converted to TensorFlow Lite format to be integrated into a mobile platform through Android Studio. The application uses a waterfall model without maintenance, starting from the analysis of x-ray dataset needs, development and testing of the YOLOv8 model, conversion to TensorFlow Lite, design, black box testing, and application on Android devices. This application can only identify x-ray photos of the soles of the feet looking right and left. Confusion matrix application testing with 150 epochs shows performance with recall 86.2%, precision 77.1%, accuracy 83.3%, mAP50 94.9%, and mAP50-95 76.2%. Black box testing on mobile devices using datasets augmented with 45° horizontal shear and 90° rotation resulted in maximum identification accuracy compared to traditional methods such as the wet foot test. Traditional methods print the soles of the feet with an identification process that requires precision of the patient's standing position. This app detects flatfoot early, improving comfort in daily activities and sports.

References

Alfarizi, D. N., Pangestu, R. A., Aditya, D., Setiawan, M. A., & Rosyani, P. (2023). Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis. AI dan SPK: Jurnal Artificial Intelligent dan Sistem Penunjang Keputusan, 1(1), 54-63.

Babović, S. S., Vujović, M., Stilinović, N. P., Jeftić, O., & Novaković, A. D. (2023). Labeling of Baropodometric Analysis Data Using Computer Vision Techniques in Classification of Foot Deformities. Medicina, 59(5), 1-10. https://doi.org/10.3390/medicina59050840

Bharat, Agarwal, Dr. G. C., Anand, D. M. K., & Khokariya, Dr. A. (2024). Anthropometric Measurements of The Medial Longitudinal Arch of Foot in Male and Female Population with Its Clinical Correlation. Educational Administration Theory and Practices, 30, 696–708. https://doi.org/https://doi.org/10.53555/kuey.v30i2.1784

Chae, J., Kang, Y.-J., & Noh, Y. (2020). A Deep-Learning Approach for Foot-Type Classification Using Heterogeneous Pressure Data. Sensors, 20(16), 4481. https://doi.org/10.3390/s20164481

Haidar, A. R., Nur Ilmi, M., Maisaroh, Dwiyanti, N., As-Syifa, F., Putri Agnesia, D., Faris Naufal, A., Pristianto, A., & Wahyuni. (2023). Pemberian Penanganan Fisioterapi Guna Menangani Permasalahan Flatfoot Pada Atlet PB. Metla Raya Sleman, Yogyakarta. Easta Journal of Innovative Community Services, 2, 1–15. https://doi.org/https://doi.org/10.58812/ejincs.v2i01.149

Hawibowo, M. S. (2024). Aplikasi Pengklasifikasi Kematangan Pepaya Menggunakan Metode CNN Berbasis Android (Doctoral dissertation, Universitas Islam Indonesia). https://dspace.uii.ac.id/handle/123456789/50071

Ho, M., Kong, P. W., Chong, L. J. Y., & Lam, W. K. (2019). Foot orthoses alter lower limb biomechanics but not jump performance in basketball players with and without flat feet. Journal of Foot and Ankle Research, 12(1), 1–14. https://doi.org/10.1186/s13047-019-0334-1

Irawan, F., Nurrahmad, L., & Permana, D. F. (2020). Classification of Arch Height Index and Arcus Pedis to The Agility. Proceedings of the 5th International Seminar of Public Health and Education, ISPHE, 185-191. Universitas Negeri Semarang, Semarang, Indonesia: EAI. https://doi.org/10.4108/eai.22-7-2020.2300272

Kim, J. Y., Hwang, J. A. Y., Park, E., Nam, H. U., & Cheon, S. (2020). Flat-Feet prediction based on a designed wearable sensing shoe and a PCA-Based deep neural network model. IEEE Access, 8, 199070–199080. https://doi.org/10.1109/ACCESS.2020.3033826

Kolhe, P. D., Sharath, H. V, Rathi, S. G., & Patil, D. S. (2024). Effect of Foot Rehabilitation Exercises for Painful Flat Foot in a 20-Year-Old Female: A Case Study Analysis. Cureus, 1–9. https://doi.org/10.7759/cureus.59377

Kumala, M. S., Tinduh, D., & Poerwandari, D. (2019). Comparison of Lower Extremities Physical Performance on Male Young Adult Athletes with normal foot and flatfoot. Surabaya Physical Medicine and Rehabilitation Journal, 1(1), 6–14. https://doi.org/10.20473/spmrj.v1i1.16156

Latifah, Y., Naufal, A. F., Nafi’ah, D., & Astari, R. W. (2021). Hubungan Antara Postur Flat Foot Dengan Keseimbangan Statis Pada Anak Usia 12 Tahun. FISIO MU: Physiotherapy Evidences, 2(1), 1–6. https://doi.org/10.23917/fisiomu.v2i1.10039

Ng, J. W., Chong, L. J. Y., Pan, J. W., Lam, W. K., Ho, M., & Kong, P. W. (2021). Effects of foot orthosis on ground reaction forces and perception during short sprints in flat-footed athletes. Research in Sports Medicine, 29(1), 43–55. https://doi.org/10.1080/15438627.2020.1755673

Prihandoko, P., Zufari, F., Yuhandri, Y., & Irawan, Y. (2025). Enhancing Real Time Crowd Counting Using YOLOv8 Integrated with Microservices Architecture for Dynamic Object Detection in High Density Environments. Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), 6(1), 330-342.

Rahayu, W., Prianto, C., & Ainun Novia, E. (2021). Perbandingan Algoritma K-Means dan Naïve Bayes Untuk Memprediksi Priotitas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan pada PT.Pertamina (Persero). Jurnal Teknik Informatika, 13(2), 1–8.

Rasmila, R., Parhan, M. R., Hadinta, N., & Putra, M. S. (2024). Simulasi Sistem Monitoring Kenaikan Level Air pada Area Rawan Banjir Secara Real-Time berbasis Smartphone Android. Jurnal Pengembangan Sistem Informasi dan Informatika, 5(2), 45-53. https://doi.org/10.47747/jpsii.v5i2.1663

Savic, S. P., Lukic, N., Prodanovic, N., & Devedzic, G. (2019. A Comparative FE Analysis of a Flat Foot with and without a Custom-made Orthotic Insole. The 8th Mediterranean Conference on Embedded Computing (MECO), 1-4. Budva, Montenegro: IEEE. https://doi.org/10.1109/MECO.2019.8760280

Sibuea, S., Ikhsan Saputro, M., Annan, A., & Bowo Widodo, Y. (2022). Aplikasi Mobile Collection Berbasis Android pada PT. Suzuki Finance Indonesia. Maret, 2(1), 31–42. https://doi.org/https://doi.org/10.55606/jitek.v2i1.185

Wahyudi, A. A. (2024). Sistem Deteksi Penyakit Tuberkulosis Berbasis Chest Xray Menggunakan Metode Convolutional Neural Network Pada Platform Android (Doctoral dissertation, Universitas Islam Sultan Agung Semarang). https://repository.unissula.ac.id/34034/

Wibowo, D. B., Haryadi, G. D., & Pratomo, A. W. (2019). Pengembangan Pemindai Dokumen Menjadi Pemindai Telapak Kaki Untuk Identifikasi Flat Foot. Jurnal Rekayasa Mesin, 14(3), 2540–7678. https://doi.org/10.32497/jrm.v14i3.1639

Downloads

Published

2025-04-11

How to Cite

Haris, A., & Nurhaida, I. (2025). Aplikasi Artificial intelligence untuk Klasifikasi Lengkungan Kaki: Solusi berbasis Radiografi. Edumatic: Jurnal Pendidikan Informatika, 9(1), 79–88. https://doi.org/10.29408/edumatic.v9i1.29098