Analisis Perbandingan Algoritma SVM, Random Forest dan Logistic Regression untuk Prediksi Stunting Balita

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i1.29407

Keywords:

logistic regression, prediction, random forest, stunting, svm

Abstract

The prevalence of stunting in Banjarmasin City in 2023 reached 26.5%, exceeding the WHO target (below 20%). Stunting impacts physical growth, cognitive development, and long-term economic productivity. The purpose of this study is to compare the performance of SVM, random forest, and logistic regression algorithms in classifying the stunting status of toddlers. The approach we use is comparative quantitative with machine learning methods for health data classification. Data totaling 2,231 under-five records were obtained from the Banjarmasin City Health Office. We used age, weight, height, and z-score information. Data preprocessing includes handling missing values, categorical data transformation, numerical data standardization, and feature selection. The dataset was divided into 70:30 and 80:20 ratios using stratified sampling with 5-fold cross-validation. Our results show that SVM is the best model, with accuracy 92%, precision 91%, recall 99%, F1-score 95%, and AUC 99%, followed by random forest (accuracy 91%, AUC 98%) and logistic regression (accuracy 92%, AUC 97%). SVM showed superior performance due to its ability to find the optimal hyperplane that maximally separates stunted and non-stunted classes, as well as its effectiveness in handling non-linear data through kernel tricks. SVM's good generalization ability on new data makes it a top choice as a predictive tool for stunting prevention in Banjarmasin City.

References

Adzhima, F., Budianita, E., Nazir, A., & Syafria, F. (2023). Klasifikasi Status Stunting Balita Dengan Metode Support Vector Machine Berbasis Web. Jurnal Inovtek Polbeng-Seri Informatika, 8(2), 381–392. https://doi.org/10.35314/isi.v8i2.3641

Bandyopadhyay, P. (2020). Exploring machine learning algorithms to predict health risks and outcomes. World Journal of Advanced Research and Reviews, 7(3), 313–327. https://doi.org/10.30574/wjarr.2020.7.3.0341

Brar, S., Akseer, N., Sall, M., Conway, K., Diouf, I., Everett, K., Islam, M., Sène, P. I. S., Tasic, H., Wigle, J., & Bhutta, Z. (2020). Drivers of stunting reduction in Senegal: a country case study. The American Journal of Clinical Nutrition, 112, 860S-874S. https://doi.org/10.1093/ajcn/nqaa151

Candra, A., Erkamim, M., Muharrom, M., & Prayitno, E. (2024). Klasifikasi Stunting Pada Balita Berdasarkan Status Gizi Menggunakan Pendekatan Support Vector Machine (SVM). Jurnal Ilmiah FIFO, 16(2), 171-181. https://doi.org/10.22441/fifo.2024.v16i2.007

Chen, K., Adriansyah, R. A. F., Juliandy, C., Sinaga, F. M., Liko, F., & Angkasa, A. (2024). Classification of Big Data Stunting Using Support Vector Regression Method at Stella Maris Medan Maternity Hospital. Indonesian Journal of Artificial Intelligence and Data Mining, 7(2). https://doi.org/10.24014/ijaidm.v7i2.31112

Dermawan, A., Mahanim, M., & Siregar, N. (2022). Upaya Percepatan Penurunan Stunting di Kabupaten Asahan. Jurnal Bangun Abdimas, 1(2), 98–104. https://doi.org/10.56854/ba.v1i2.124

Dhewi, S. (2024). Hubungan Antara Faktor Risiko pada Ibu Hamil dengan Kejadian Stunting di Wilayah Kerja Puskesmas Mandastana, Kabupaten Barito Kuala. Jurnal Kesehatan Indonesia, 14(1), 48–54. https://doi.org/10.33657/jurkessia.v14i1.916

Dhirah, U. H., & Mardiah, A. (2023). Pengaruh Kejadian Stunting Terhadap Tumbuh Kembang Balita Usia 24-59 Bulan di Wilayah Kerja Puskesmas Alue Bilie Kecamatan Darul Makmur Kabupaten Nagan Raya. Journal of Healthcare Technology and Medicine, 9(1), 733-740. https://doi.org/10.33143/jhtm.v9i1.2974

Fannany, C., Gunawan, P. H., & Aquarini, N. (2024). Machine Learning Classification Analysis for Proactive Prevention of Child Stunting in Bojongsoang: A Comparative Study. International Conference on Data Science and Its Applications (ICoDSA), 1–5. Bali, Indonesia: IEEE. https://doi.org/10.1109/ICoDSA62899.2024.10651698

Farona, C., Firnawati, A. fristi, & Habibi, M. (2022). Stunting In Children In Rural Related To Socio-Economic Conditions Of Communities. Journal Health Information Management Indonesian (JHIMI), 1(3), 78–81. https://doi.org/10.46808/jhimi.v3i1.77

Fatihunnajah, M. F., & Budiono, I. (2023). Faktor Determinan Kejadian Stunting pada Balita Usia 24-59 Bulan. Indonesian Journal of Public Health and Nutrition, 3(1), 69–79. https://doi.org/10.15294/ijphn.v3i1.57748

Ghose, P., Sharmin, S., Gaur, L., & Zhao, Z. (2022). Grid-Search Integrated Optimized Support Vector Machine Model for Breast Cancer Detection. International Conference on Bioinformatics and Biomedicine (BIBM), 2846–2852. USA: IEEE. https://doi.org/10.1109/BIBM55620.2022.9995703

Handryastuti, S., Pusponegoro, H. D., Nurdadi, S., Chandra, A., Pramita, F. A., Soebadi, A., Widjaja, I. R., & Rafli, A. (2022). Comparison of Cognitive Function in Children with Stunting and Children with Undernutrition with Normal Stature. Journal of Nutrition and Metabolism, 2022, 1–5. https://doi.org/10.1155/2022/9775727

Jalil, A., Homaidi, A., & Fatah, Z. (2024). Implementasi Algoritma Support Vector Machine Untuk Klasifikasi Status Stunting Pada Balita. G-Tech: Jurnal Teknologi Terapan, 8(3), 2070–2079. https://doi.org/10.33379/gtech.v8i3.4811

Kurniawati, N., & Ardiansyah, R. Y. (2022). Pengaruh Latar Belakang Pendidikan Ibu Terhadap Pengetahuan Ibu Tentang Menu Berbasis Pangan Lokal Untuk Pencegahan Kejadian Stunting. Pengembangan Ilmu Dan Praktik Kesehatan, 1(4), 19–28. https://doi.org/10.56586/pipk.v1i4.237

Lestari, W. S., Saragih, Y. M., & Caroline. (2024). Comparison of Deep Neural Networks and Random Forest Algorithms for Multiclass Stunting Prediction in Toddlers. Teknika, 13(3), 412–417. https://doi.org/10.34148/teknika.v13i3.1063

Marniati, M., Putri, E. S., Sriwahyuni, S., Khairunnas, K., & Duana, M. (2020). Knowledge Study, Income Level and Socio-Culture of the Nutritional Status of toddler. Journal of Nutrition Science, 1(2), 65-71. https://doi.org/10.35308/jns.v1i2.2770

Maulida, Y. N., Ilmi, M. B., & Aquarista, M. F. (2023). Hubungan Pengetahuan, Tingkat Pendidikan dan Dukungan Keluarga dengan Kejadian Stunting di Wilayah Kerja Puskesmas Kuin Raya Kota Banjarmasin. Media Publikasi Promosi Kesehatan Indonesia (MPPKI), 6(9), 1794–1799. https://doi.org/10.56338/mppki.v6i9.3619

Rahman, S. M. J., Ahmed, N. A. M. F., Abedin, M. M., Ahammed, B., Ali, M., Rahman, M. J., & Maniruzzaman, M. (2021). Investigate the risk factors of stunting, wasting, and underweight among under-five Bangladeshi children and its prediction based on machine learning approach. Plos One, 16(6), e0253172. https://doi.org/10.1371/journal.pone.0253172

Reza, A. A. R., & Rohman, M. S. (2024). Prediction Stunting Analysis Using Random Forest Algorithm and Random Search Optimization. Journal Of Informatics and Telecommunication Engineering, 7(2), 534–544. https://doi.org/10.31289/jite.v7i2.10628

Rifada, M., Chamidah, N., Nuraini, P., Gunawan, F. D., & Muniroh, L. (2021). Determinants of stunting among under-five years children using the ordinal logistic regression model. International Conference on Mathematics and Mathematics Education (ICMMEd 2020), 405-411. Malulku, Indonesia: Atlantis Press. https://doi.org/10.2991/assehr.k.210508.096

Rosida, D. F., Winarti, S., & Firdausy, N. (2023). Study of Flakes from Protein-Rich Flour and Essential Oils For Stunting Sufferers. Technium: Romanian Journal of Applied Sciences and Technology, 16, 317–321. https://doi.org/10.47577/technium.v16i.10004

Setiabudy, M., Widarsa, I. K. T., Santoso, P. N., & Dewi, A. A. A. A. P. (2024). Pendampingan Keluarga Balita Stunting di Posyandu Ratna 1, Desa Bayung Gede, Kecamatan Kintamani. Warmadewa Minesterium Medical Journal, 3(2), 84–91.

Sibuea, A. T. A., & Gunawan, P. H. (2024). Classifying Stunting Status in Toddlers Using K-Nearest Neighbor and Logistic Regression Analysis. International Conference on Data Science and Its Applications (ICoDSA), 6–11. Bali, Indonesia: IEEE. https://doi.org/10.1109/ICoDSA62899.2024.10652063

Suryana, E. A., & Azis, M. (2023). The Potential Of Economic Loss Due To Stunting in Indonesia. Jurnal Ekonomi Kesehatan Indonesia, 8(1), 52-65. https://doi.org/10.7454/eki.v8i1.6796

Sutarmi, S., Warijan, W., Indrayana, T., B, D. P. P., & Gunawan, I. (2023). Machine Learning Model For Stunting Prediction. Jurnal Health Sains, 4(9), 10–23. https://doi.org/10.46799/jhs.v4i9.1073

Syafika, V. A. N., & Karisma, R. D. L. N. (2023). Implementasi Support Vector Machine (SVM) dalam Penentuan Klasifikasi Indeks Khusus Penanganan Stunting di Indonesia. Seminar Nasional Official Statistics, 2023(1), 267–276. https://doi.org/10.34123/semnasoffstat.v2023i1.1595

Utami, M., Islamiyati, A., & Thamrin, S. A. (2024). Pendugaan Koefisien Regresi Logistik Biner Menggunakan Algoritma Least Angle Regression. ESTIMASI: Journal of Statistics and Its Application, 5(1), 75–83. https://doi.org/10.20956/ejsa.v5i1.12489

Wigle, J. M., Akseer, N., Mogilevskii, R., Brar, S., Conway, K., Enikeeva, Z., Iamshchikova, M., Islam, M., Kirbasheva, D., Rappaport, A. I., Tasic, H., Vaivada, T., & Bhutta, Z. A. (2020). Drivers of stunting reduction in the Kyrgyz Republic: A country case study. The American Journal of Clinical Nutrition, 112, 830S-843S. https://doi.org/10.1093/ajcn/nqaa120

Downloads

Published

2025-04-14

How to Cite

Febriyanti, N. R., Kusrini, K., & Hartanto, A. D. (2025). Analisis Perbandingan Algoritma SVM, Random Forest dan Logistic Regression untuk Prediksi Stunting Balita. Edumatic: Jurnal Pendidikan Informatika, 9(1), 149–158. https://doi.org/10.29408/edumatic.v9i1.29407