Diagnosis Dini Penyakit Mata: Klasifikasi Citra Fundus Retina dengan Convolutional Neural Network VGG-16

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i1.29571

Keywords:

retinal fundus image, cnn, eye disease classification, vgg-16

Abstract

Retinal fundus image-based eye disease classification is important to support early diagnosis of vision disorders such as cataracts, glaucoma, and diabetic retinopathy. This study aims to diagnose early eye diseases with retinal fundus image classification using Convolutional Neural Network VGG-16. The model was developed to detect cataract, glaucoma, and diabetic retinopathy to support early diagnosis. The dataset used comes from Kaggle, including 4,217 retinal fundus images consisting of 1,038 cataract, 1,007 glaucoma, 1,098 diabetic retinopathy, and 1,074 normal images. The images were processed through normalization, augmentation, and resizing to 224×224 pixels, with the dataset divided in a ratio of 80:10:10 for training, validation, and testing. Results showed that the VGG-16 model with transfer learning achieved 88% accuracy, a 10% increase from the previous 75% in the CNN model without transfer learning. This model has the potential to be integrated in clinical decision support systems or mobile applications to improve the speed and accuracy of diagnosis. Limitations of the study include the limited dataset size and potential data bias that may affect the accuracy of the model in detecting eye diseases early, so future research is recommended to use larger and more diverse datasets, as well as explore other deep learning architectures to improve classification performance.

References

Agustina, R., Magdalena, R., & Pratiwi, N. K. C. (2022). Klasifikasi Kanker Kulit menggunakan Metode Convolutional Neural Network dengan Arsitektur VGG-16. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10(2), 446-457. https://doi.org/10.26760/elkomika.v10i2.446

Andreas, E., & Widhiarso, W. (2023). Klasifikasi Penyakit Mata Katarak menggunakan Convolutional Neural Network dengan Arsitektur Inception V3. MDP Student Conference, 2(1), 107–113. https://doi.org/10.35957/mdp-sc.v2i1.3660

Cahya, F. N., Hardi, N., Riana, D., & Hadianti, S. (2021). Klasifikasi Penyakit Mata menggunakan Convolutional Neural Network (CNN). SISTEMASI: Jurnal Sistem Informasi, 10(3), 618-626. https://doi.org/10.32520/stmsi.v10i3.1248

Fadlun, M. H., Martanto, M., & Hayati, U. (2024). Klasifikasi Tumor Otak menggunakan Convolutional Neural Network dan Transfer Learning. Jurnal Informatika dan Rekayasa Perangkat Lunak, 6(1), 289-295.

Firdaus, R., Satria, J., & Baidarus, B. (2022). Klasifikasi Jenis Kelamin berdasarkan Gambar Mata menggunakan Algoritma Convolutional Neural Network (CNN). Jurnal CoSciTech (Computer Science and Information Technology, 3(3), 267-273. https://doi.org/10.37859/coscitech.v3i3.4360

Indraswari, R., Herulambang, W., & Rokhana, R. (2022). Deteksi Penyakit Mata pada Citra Fundus menggunakan Convolutional Neural Network (CNN). Techno.Com, 21(2), 378-389. https://doi.org/10.33633/tc.v21i2.6162

Iswantoro, D., & Handayani, D. U. (2022). Klasifikasi Penyakit Tanaman Jagung menggunakan Metode Convolutional Neural Network (CNN). Jurnal Ilmiah Universitas Batanghari Jambi, 22(2), 900-905. https://doi.org/10.33087/jiubj.v22i2.2065

Jatmoko, C., & Lestiawan, H. (2024). Prediksi Penyakit Mata menggunakan Convolutional Neural Network. Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi), 8(1), 34-38. https://doi.org/10.30998/semnasristek.v8i01.7129

Marcella, D., Yohannes, Y., & Devella, S. (2022). Klasifikasi Penyakit Mata menggunakan Convolutional Neural Network dengan Arsitektur VGG-19. Jurnal Algoritme, 3(1), 60–70. https://doi.org/10.35957/algoritme.v3i1.3331

Mas’ud, R. A., & Zeniarja, J. (2024). Optimasi Convolutional Neural Networks untuk Deteksi Kanker Payudara menggunakan Arsitektur DenseNet. Edumatic: Jurnal Pendidikan Informatika, 8(1), 310-318. https://doi.org/10.29408/edumatic.v8i1.25883

Muhlashin, M. N. I., & Stefanie, A. (2023). Klasifikasi Penyakit Mata berdasarkan Citra Fundus menggunakan YOLO V8. JATI (Jurnal Mahasiswa Teknik Informatika, 7(2), 1363–1368. https://doi.org/10.36040/jati.v7i2.6927

NurHamzah, D., Sariyanto, I. W., Suwirmayanti, N. L. G. P., & Indrianto. (2024). Identifikasi Pneumonia pada Citra Rontgen Paru-paru menggunakan Convolutional Neural Network. Seminar Nasional Sistem Informasi dan Teknologi (SPINTER), 1(3), 72–77. Denpasar, Indonesia: STIKOM Bali.

Pamungkas, N. B., & Suhendar, A. (2024). Penerapan Metode Convolutional Neural Network pada Sistem Klasifikasi Penyakit Tanaman Apel berdasarkan Citra Daun. Edumatic: Jurnal Pendidikan Informatika, 8(2), 675–684. https://doi.org/10.29408/edumatic.v8i2.27958

Qulub, M. S., & Agustin, S. (2024). Identifikasi Penyakit Mata dengan Klasifikasi Citra Foto Fundus menggunakan Convolutional Neural Network (CNN). JATI (Jurnal Aplikasi Teknik dan Inovasi), 8(5), 11034–11039. https://doi.org/10.36040/jati.v8i5.10974

Rozaqi, A. J., Sunyoto, A., & Arief, R. (2021). Deteksi Penyakit pada Daun Kentang menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network. Creative Information Technology Journal, 8(1), 22-31. https://doi.org/10.24076/citec.2021v8i1.263

Septipalan, M. L., Hibrizi, M. S., Latifah, N., Rosalina, & Bimantoro, F. (2024). Klasifikasi Tumor Otak menggunakan CNN dengan Arsitektur ResNet50. Seminar Nasional Teknologi & Sains, 3(1), 103–108. https://doi.org/10.29407/stains.v3i1.4357

Shidik, F. A., Musthofa, K., Kartiningtyas, A. P., & Agustin, T. (2024). Analisis Citra Medis untuk Identifikasi Penyakit Mata dengan Teknologi Convolutional Neural Networks. Seminar Nasional AMIKOM Surakarta (SEMNASA), 68–80. Surakarta, Indonesia: Semnasa.

Triginandri, R., & Subhiyakto, E. R. (2024). Deteksi Dini Cacar Monyet menggunakan Convolutional Neural Network (CNN) dalam Aplikasi Mobile. Edumatic: Jurnal Pendidikan Informatika, 8(2), 516-525. https://doi.org/10.29408/edumatic.v8i2.27625

Verdy, & Hartati, E. (2024). Klasifikasi Penyakit Mata menggunakan Convolutional Neural Network Model ResNet-50. Jurnal Rekayasa Sistem Informasi dan Teknologi, 1(3), 199–206. https://doi.org/10.59407/jrsit.v1i3.529

William, W., & Lubis, C. (2022). Klasifikasi Penyakit Mata menggunakan CNN. Jurnal Ilmu Komputer dan Sistem Informasi, 10(1), 1–4. https://doi.org/10.24912/jiksi.v10i1.17834

Downloads

Published

2025-04-16

How to Cite

Putri, C. A., & Rakasiwi, S. (2025). Diagnosis Dini Penyakit Mata: Klasifikasi Citra Fundus Retina dengan Convolutional Neural Network VGG-16. Edumatic: Jurnal Pendidikan Informatika, 9(1), 208–216. https://doi.org/10.29408/edumatic.v9i1.29571