Evaluasi Kinerja Metode Peningkatan Kontras (CLAHE & HE) pada Klasifikasi Ras Kucing menggunakan VGG16

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i1.29578

Keywords:

convolution neural network, clahe, histogram equalization, cat breeds, vgg16

Abstract

Cat breed classification is challenging in image processing due to complex visual variations from crossbreeding, which affect care requirements. This study evaluates the effectiveness of Contrast Limited Adaptive Histogram Equalization (CLAHE) and Histogram Equalization (HE) in cat breed classification using a VGG16-based Convolutional Neural Network (CNN). The dataset consists of 4,656 cat images from six breeds, processed with CLAHE and HE for contrast enhancement before training. It is divided into 70% for training, 15% for validation, and 15% for testing. The model is trained for 10 epochs using the Adam optimizer, a 0.0001 learning rate, and batch sizes of 16, 32, and 64. Evaluation using accuracy, precision, recall, and F1-score shows that CLAHE achieves the highest accuracy (99.39%), surpassing HE (99.17%) by 3.29%. CLAHE is more effective in preserving local details, improving precision (78.67%), recall (78.33%), and F1-score (78%). The highest performance is in the Sphinx breed (F1-score 92%), while the lowest is in American Shorthair (F1-score 72%). A high standard deviation indicates classification variations across breeds, but CLAHE consistently improves model accuracy. These findings suggest that CLAHE is more effective than HE in enhancing cat breed classification and offers a more efficient solution than adopting a complex model architecture.

References

Aulia, S., & Rahmat, D. (2022). Brain tumor identification based on VGG-16 architecture and CLAHE method. JOIV: International Journal on Informatics Visualization, 6(1), 96-102. https://doi.org/10.30630/joiv.6.1.864

Bhushan, S., Alshehri, M., Keshta, I., Chakraverti, A. K., Rajpurohit, J., & Abugabah, A. (2022). An Experimental Analysis of Various Machine Learning Algorithms for Hand Gesture Recognition. Electronics, 11(6). https://doi.org/10.3390/electronics11060968

Cahyo, D. D. N., Fauzi, M. A., Nugroho, J. T., & Kusrini, K. (2023). Analisis Perbandingan Optimizer pada Arsitektur NASNetMobile Convolutional Neural Network untuk Klasifikasi Ras Kucing. Jurnal Teknologi, 15(2), 171–177. https://doi.org/10.34151/jurtek.v15i2.4025

Choirunisa, N. A., Karlita, T., & Asmara, R. (2021). Deteksi Ras Kucing Menggunakan Compound Model Scaling Convolutional Neural Network. Technomedia Journal, 6(2), 236–251. https://doi.org/10.33050/tmj.v6i2.1704

Dhal, K. G., Das, A., Ray, S., Gálvez, J., & Das, S. (2021). Histogram Equalization Variants as Optimization Problems: A Review. Archives of Computational Methods in Engineering, 28(3), 1471–1496. https://doi.org/10.1007/s11831-020-09425-1

Fawwaz, M. A. A., Ramadhani, K. N., & Sthevanie, F. (2020). Klasifikasi Ras pada Kucing menggunakan Algoritma Convolutional Neural Network (CNN). E-Proceedings of Engineering, 8(1), 715–730.

Kamal, K., & Ez-Zahraouy, H. (2023). A comparison between the VGG16, VGG19 and ResNet50 architecture frameworks for classification of normal and CLAHE processed medical images. Research Square. 1-16. https://doi.org/10.21203/rs.3.rs-2863523/v1

Linda, K. D., Kusrini, K., & Hartanto, A. D. (2024). Studi Literatur Mengenai Klasifikasi Citra Kucing Dengan Menggunakan Deep Learning: Convolutional Neural Network (CNN). Journal of Electrical Engineering and Computer (JEECOM), 6(1), 129–137. https://doi.org/10.33650/jeecom.v4i2

Majumdar, S., Pramanik, P., & Sarkar, R. (2023). Gamma function based ensemble of CNN models for breast cancer detection in histopathology images. Expert Systems with Applications, 213, 119022. https://doi.org/10.1016/j.eswa.2022.119022

Malik, Y. (2023). Akurasi dan Presisi Analisis Kadar Nikel (Ni) pada Sampel Nikel Laterit Menggunakan X-Ray Fluorescence Spectometry (XRF). Sains: Jurnal Kimia dan Pendidikan Kimia, 12(2), 87-94.

Marvasti-Zadeh, S. M., Ghanei-Yakhdan, H., & Kasaei, S. (2021). Adaptive exploitation of pre-trained deep convolutional neural networks for robust visual tracking. Multimedia Tools and Applications, 80(14), 22027–22076. https://doi.org/10.1007/s11042-020-10382-x

Mungra, D., Agrawal, A., Sharma, P., Tanwar, S., & Obaidat, M. S. (2020). PRATIT: a CNN-based emotion recognition system using histogram equalization and data augmentation. Multimedia Tools and Applications, 79(3–4), 2285–2307. https://doi.org/10.1007/s11042-019-08397-0

Pamungkas, N. B., & Suhendar, A. (2024). Penerapan Metode Convolutional Neural Network pada Sistem Klasifikasi Penyakit Tanaman Apel berdasarkan Citra Daun. Edumatic: Jurnal Pendidikan Informatika, 8(2), 675–684. https://doi.org/10.29408/edumatic.v8i2.27958

Pratama, G. A., Puspaningrum, E. Y., & Maulana, H. (2024). Convolutional Neural Network dan Faster Region Convolutional Neural Network untuk Klasifikasi Kualitas Biji Kopi Arabika. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3), 2776–2785. https://doi.org/10.23960/jitet.v12i3.4887

Ramadhan, A. T., & Setiawan, A. (2023). Catbreedsnet: An Android Application for Cat Breed Classification Using Convolutional Neural Networks. Jurnal Online Informatika, 8(1), 52–60. https://doi.org/10.15575/join.v8i1.1007

Rumpungan, J. L., On, C. K., Hijazi, M. H. A., & Karim, S. A. B. A. (2023). Image Classification of Occluded and Non-Occluded Cats and Dogs Datasets with Machine Learning. Symposium on Computers & Informatics (ISCI), 19–24. https://doi.org/10.1109/ISCI58771.2023.10391871

Saifullah, S., & Drezewski, R. (2023). Modified Histogram Equalization for Improved CNN Medical Image Segmentation. Procedia Computer Science, 225, 3021-3030. https://doi.org/10.1016/j.procs.2023.10.295

Wisnuyana, B., & Yuniati, E. (2023). Kehadiran Kucing Sebagai Hewan Peliharaan di Masa Pandemi Covid-19 (Studi Kasus Masyarakat Kota Surabaya dan Sidoarjo). SOLIDARITY, 12(2), 414–428. https://doi.org/10.15294/solidarity.v12i2.76749

Yang, H., Ni, J., Gao, J., Han, Z., & Luan, T. (2021). A novel method for peanut variety identification and classification by Improved VGG16. Scientific Reports, 11(1), 15756. https://doi.org/10.1038/s41598-021-95240-y

Zheng, M., & Luo, W. (2022). Underwater Image Enhancement Using Improved CNN Based Defogging. Electronics, 11(1), 1–21. https://doi.org/10.3390/electronics11010150

Downloads

Published

2025-04-17

How to Cite

Juslan, W., & Muhammad, A. H. (2025). Evaluasi Kinerja Metode Peningkatan Kontras (CLAHE & HE) pada Klasifikasi Ras Kucing menggunakan VGG16. Edumatic: Jurnal Pendidikan Informatika, 9(1), 246–255. https://doi.org/10.29408/edumatic.v9i1.29578