Analisis Performa Metode Extreme Learning Machine dan Multiple Linear Regression dalam Prediksi Produksi Gula
DOI:
https://doi.org/10.29408/edumatic.v9i1.29626Keywords:
sugar, prediction, extreme learning machine, mape, multiple linear regressionAbstract
Sugar is a crucial commodity in Indonesia, with demand increasing annually. Variations in sugar production require accurate prediction strategies for industrial planning. This study aims to analyze the performance of the Extreme Learning Machine (ELM) and Multiple Linear Regression (MLR) methods in predicting sugar production. This research employs a quantitative experimental approach, with sugar production data during the 2020-2023 milling period as the research subject. Data collection techniques involve observation and documentation, while data analysis techniques utilize Mean Absolute Percentage Error (MAPE) and 10-Fold Cross-Validation to measure model accuracy. The results indicate that ELM has a lower error rate (MAPE 16.06%) compared to MLR (MAPE 27.90%), making it more effective in capturing complex sugar production patterns. Implementing this model in a web-based system also enables more efficient production monitoring. The ELM method proves to be superior in predicting sugar production and can be integrated into industrial systems to support data-driven decision-making. Future research can explore other predictive models, such as deep learning, and consider external factors like weather and soil conditions to enhance accuracy.
References
Atikasari, L., Hartini, H., & Harahap, S. (2023). Evaluasi Hasil Trend Produktivitas Tebu (Saccharum Officinarum L.) Berdasarkan Kategori Tanam Di PG Semboro PT Perkebunan Nusantara XI: AGRIBIOS, 21(2), 172–182. https://doi.org/10.36841/agribios.v21i2.3664
Chakravarthy, S. S., & Rajaguru, H. (2022). Automatic detection and classification of mammograms using improved extreme learning machine with deep learning. Irbm, 43(1), 49-61. https://doi.org/10.1016/j.irbm.2020.12.004
Habsari, H. D. P., Purnamasari, I., & Yuniarti, D. (2020). Forecasting Uses Double Exponential Smoothing Method And Forecasting Verification Uses Tracking Signal Control Chart (Case Study: Ihk Data Of East Kalimantan Province). BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(1), 013–022. https://doi.org/10.30598/barekengvol14iss1pp013-022
Haikal, F. M., Akrom, M., & Trisnapradika, G. A. (2023). Perbandingan Algoritma Multilinear Regression dan Decision Tree Regressor dalam Memprediksi Efisiensi Penghambatan Korosi Piridazin. Edumatic: Jurnal Pendidikan Informatika, 7(2), 307–315. https://doi.org/10.29408/edumatic.v7i2.22127
Hazizah, C. Y., & Widiyaningtyas, T. (2024). Analisis Metode Collaborative Filtering menggunakan KNN dan SVD++ untuk Rekomendasi Produk E-commerce Tokopedia. Edumatic: Jurnal Pendidikan Informatika, 8(2), 595–604. https://doi.org/10.29408/edumatic.v8i2.27793
Heryanto, M. A., & Suryatmana, E. R. (2020). Dinamika Agroindustri Gula Indonesia: Tinjauan Analisis Sistem. Jurnal Agribisnis Dan Sosial Ekonomi Pertanian UNPAD, 5(2), 194–210. https://doi.org/10.24198/agricore.v5i2.32100
Hutami, R., Pribadi, M. F. I., Nurcahali, F., Septiani, B., Andarwulan, N., Sapanli, K., Zuhud, E. A. M., Al Manar, P., Ichsan, N., & Wahyudi, S. (2023). Proses Produksi Gula Aren Cetak (Arenga pinnata, Merr) Di Indonesia. Jurnal Ilmiah Pangan Halal, 5(2), 119–130. https://doi.org/10.30997/jiph.v5i2.10237
Jaelani, T. (2022). Machine Learning untuk Prediksi Produksi Gula Nasional. JMPM (Jurnal Material Dan Proses Manufaktur), 6(1), 31–36. https://doi.org/10.18196/jmpm.v6i1.14897
Kertayuga, D., Santoso, E., & Hidayat, N. (2021). Prediksi Nilai Ekspor Impor Migas Dan Non-Migas Indonesia Menggunakan Extreme Learning Machine (ELM). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(6), 2792–2800.
Kurniawan, M. H., & Herwanto, D. (2022). Penerapan Metode Double Exponential Smoothing dan Moving Average pada Peramalan Permintaan Produk Gasket Cap di PT. Nesinak Industries. Serambi Engineering, VII(1), 2537–2546. https://doi.org/10.32672/jse.v7i1.3709
Laratiwi, B. N., Mulyanto, T., & Yamin, M. (2021). Analisis Produktivitas Produksi Gula Aren Dan Gula Kelapa Di PT X Menggunakan Metode Multi Factor Productivity Measurement Model (MFPMM). Jurnal Ilmiah Teknologi Dan Rekayasa, 26(1), 46–55. https://doi.org/10.35760/tr.2021.v26i1.3531
Mu’tashim, M. L., Damayanti, S. A., Zaki, H. N., Muhayat, T., & Wirawan, R. (2021). Analisis Prediksi Harga Rumah Sesuai Spesifikasi Menggunakan Multiple Linear Regression. JURNAL INFORMATIK, 3(17), 238–245. https://doi.org/10.52958/iftk.v17i3.3635
Nugroho, B. W. D., Jakti, N. J. K., Rochman, M. A. N., & Nugroho, A. J. (2023). Analisis Pengendalian Kualitas Produk Gula Dan Biaya Kualitas Dalam Menunjang Efektivitas Produksi. Jurnal Teknologi Dan Manajemen Industri Terapan, 2(2), 72–81. https://doi.org/10.55826/tmit.v2i2.100
Prianda, B. G., & Widodo, E. (2021). Perbandingan Metode Seasonal Arima Dan Extreme Learning Machine Pada Peramalan Jumlah Wisatawan Mancanegara Ke Bali. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(4), 639–650. https://doi.org/10.30598/barekengvol15iss4pp639-650
Putri, S. U., Irawan, E., Rizky, F., Tunas Bangsa, S., -Indonesia Jln Sudirman Blok No, P. A., & Utara, S. (2021). Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5. KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 2(1), 39–46.
Rahmadhani, S. N., Logiandani, L., Ramadhan, R. Z., Sofia Amriza, R. N., & Fathoni, M. Y. (2022). Analisis Forecasting Penjualan Gula Merah di Jatilawang Menggunakan Metode Weighted Moving Average. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(3), 381–386. https://doi.org/10.32736/sisfokom.v11i3.1433
Ridla, M. A., & Rahma, E. N. (2024). Prediksi Produksi Gula Tebu Berdasarkan Kualitas Menggunakan Metode Neural Network. Jurnal Janitra Informatika Dan Sistem Informasi, 4(1), 54–61.
Rozi, I. F., Arianto, R., Yunianto, D. R., Ananta, A. Y., Rahmawati, S., & Krismawati. (2024). Enhancing Aspect-Based Sentiment Analysis for Radio Station Public Opinion: Evaluating Preprocessing Strategies and Imbalanced Data Handling. International Conference on Electrical and Information Technology (IEIT), 103–108. Malang, Indonesia: IEEE. https://doi.org/10.1109/IEIT64341.2024.10763129
Sinuraya, J. F., Suryana, E. A., Shaffitri, L. R., Suharyono, S. R., & Hermawan, H. R. (2024). Kinerja Industri dan Dinamika Kebijakan Komoditas Gula Kristal Putih Nasional. Indonesian Sugar Research Journal, 4(2), 68–79. https://doi.org/10.54256/isrj.v4i2.129
Susanto, V. P., Gunawan, I., & Hartanti, L. P. S. (2022). Aplikasi teorema bayes dalam mendukung aktivitas autonomous maintenance di pabrik gula Kedawoeng. Agrointek : Jurnal Teknologi Industri Pertanian, 16(3), 373–384. https://doi.org/10.21107/agrointek.v16i3.13533
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ahmadi Yuli Ananta, Rudy Ariyanto, Imam Fahrur Rozi, Rakhmat Arianto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.