Analisis Performa Metode Extreme Learning Machine dan Multiple Linear Regression dalam Prediksi Produksi Gula

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i1.29626

Keywords:

sugar, prediction, extreme learning machine, mape, multiple linear regression

Abstract

Sugar is a crucial commodity in Indonesia, with demand increasing annually. Variations in sugar production require accurate prediction strategies for industrial planning. This study aims to analyze the performance of the Extreme Learning Machine (ELM) and Multiple Linear Regression (MLR) methods in predicting sugar production. This research employs a quantitative experimental approach, with sugar production data during the 2020-2023 milling period as the research subject. Data collection techniques involve observation and documentation, while data analysis techniques utilize Mean Absolute Percentage Error (MAPE) and 10-Fold Cross-Validation to measure model accuracy. The results indicate that ELM has a lower error rate (MAPE 16.06%) compared to MLR (MAPE 27.90%), making it more effective in capturing complex sugar production patterns. Implementing this model in a web-based system also enables more efficient production monitoring. The ELM method proves to be superior in predicting sugar production and can be integrated into industrial systems to support data-driven decision-making. Future research can explore other predictive models, such as deep learning, and consider external factors like weather and soil conditions to enhance accuracy.

References

Atikasari, L., Hartini, H., & Harahap, S. (2023). Evaluasi Hasil Trend Produktivitas Tebu (Saccharum Officinarum L.) Berdasarkan Kategori Tanam Di PG Semboro PT Perkebunan Nusantara XI: AGRIBIOS, 21(2), 172–182. https://doi.org/10.36841/agribios.v21i2.3664

Chakravarthy, S. S., & Rajaguru, H. (2022). Automatic detection and classification of mammograms using improved extreme learning machine with deep learning. Irbm, 43(1), 49-61. https://doi.org/10.1016/j.irbm.2020.12.004

Habsari, H. D. P., Purnamasari, I., & Yuniarti, D. (2020). Forecasting Uses Double Exponential Smoothing Method And Forecasting Verification Uses Tracking Signal Control Chart (Case Study: Ihk Data Of East Kalimantan Province). BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(1), 013–022. https://doi.org/10.30598/barekengvol14iss1pp013-022

Haikal, F. M., Akrom, M., & Trisnapradika, G. A. (2023). Perbandingan Algoritma Multilinear Regression dan Decision Tree Regressor dalam Memprediksi Efisiensi Penghambatan Korosi Piridazin. Edumatic: Jurnal Pendidikan Informatika, 7(2), 307–315. https://doi.org/10.29408/edumatic.v7i2.22127

Hazizah, C. Y., & Widiyaningtyas, T. (2024). Analisis Metode Collaborative Filtering menggunakan KNN dan SVD++ untuk Rekomendasi Produk E-commerce Tokopedia. Edumatic: Jurnal Pendidikan Informatika, 8(2), 595–604. https://doi.org/10.29408/edumatic.v8i2.27793

Heryanto, M. A., & Suryatmana, E. R. (2020). Dinamika Agroindustri Gula Indonesia: Tinjauan Analisis Sistem. Jurnal Agribisnis Dan Sosial Ekonomi Pertanian UNPAD, 5(2), 194–210. https://doi.org/10.24198/agricore.v5i2.32100

Hutami, R., Pribadi, M. F. I., Nurcahali, F., Septiani, B., Andarwulan, N., Sapanli, K., Zuhud, E. A. M., Al Manar, P., Ichsan, N., & Wahyudi, S. (2023). Proses Produksi Gula Aren Cetak (Arenga pinnata, Merr) Di Indonesia. Jurnal Ilmiah Pangan Halal, 5(2), 119–130. https://doi.org/10.30997/jiph.v5i2.10237

Jaelani, T. (2022). Machine Learning untuk Prediksi Produksi Gula Nasional. JMPM (Jurnal Material Dan Proses Manufaktur), 6(1), 31–36. https://doi.org/10.18196/jmpm.v6i1.14897

Kertayuga, D., Santoso, E., & Hidayat, N. (2021). Prediksi Nilai Ekspor Impor Migas Dan Non-Migas Indonesia Menggunakan Extreme Learning Machine (ELM). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(6), 2792–2800.

Kurniawan, M. H., & Herwanto, D. (2022). Penerapan Metode Double Exponential Smoothing dan Moving Average pada Peramalan Permintaan Produk Gasket Cap di PT. Nesinak Industries. Serambi Engineering, VII(1), 2537–2546. https://doi.org/10.32672/jse.v7i1.3709

Laratiwi, B. N., Mulyanto, T., & Yamin, M. (2021). Analisis Produktivitas Produksi Gula Aren Dan Gula Kelapa Di PT X Menggunakan Metode Multi Factor Productivity Measurement Model (MFPMM). Jurnal Ilmiah Teknologi Dan Rekayasa, 26(1), 46–55. https://doi.org/10.35760/tr.2021.v26i1.3531

Mu’tashim, M. L., Damayanti, S. A., Zaki, H. N., Muhayat, T., & Wirawan, R. (2021). Analisis Prediksi Harga Rumah Sesuai Spesifikasi Menggunakan Multiple Linear Regression. JURNAL INFORMATIK, 3(17), 238–245. https://doi.org/10.52958/iftk.v17i3.3635

Nugroho, B. W. D., Jakti, N. J. K., Rochman, M. A. N., & Nugroho, A. J. (2023). Analisis Pengendalian Kualitas Produk Gula Dan Biaya Kualitas Dalam Menunjang Efektivitas Produksi. Jurnal Teknologi Dan Manajemen Industri Terapan, 2(2), 72–81. https://doi.org/10.55826/tmit.v2i2.100

Prianda, B. G., & Widodo, E. (2021). Perbandingan Metode Seasonal Arima Dan Extreme Learning Machine Pada Peramalan Jumlah Wisatawan Mancanegara Ke Bali. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(4), 639–650. https://doi.org/10.30598/barekengvol15iss4pp639-650

Putri, S. U., Irawan, E., Rizky, F., Tunas Bangsa, S., -Indonesia Jln Sudirman Blok No, P. A., & Utara, S. (2021). Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5. KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 2(1), 39–46.

Rahmadhani, S. N., Logiandani, L., Ramadhan, R. Z., Sofia Amriza, R. N., & Fathoni, M. Y. (2022). Analisis Forecasting Penjualan Gula Merah di Jatilawang Menggunakan Metode Weighted Moving Average. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(3), 381–386. https://doi.org/10.32736/sisfokom.v11i3.1433

Ridla, M. A., & Rahma, E. N. (2024). Prediksi Produksi Gula Tebu Berdasarkan Kualitas Menggunakan Metode Neural Network. Jurnal Janitra Informatika Dan Sistem Informasi, 4(1), 54–61.

Rozi, I. F., Arianto, R., Yunianto, D. R., Ananta, A. Y., Rahmawati, S., & Krismawati. (2024). Enhancing Aspect-Based Sentiment Analysis for Radio Station Public Opinion: Evaluating Preprocessing Strategies and Imbalanced Data Handling. International Conference on Electrical and Information Technology (IEIT), 103–108. Malang, Indonesia: IEEE. https://doi.org/10.1109/IEIT64341.2024.10763129

Sinuraya, J. F., Suryana, E. A., Shaffitri, L. R., Suharyono, S. R., & Hermawan, H. R. (2024). Kinerja Industri dan Dinamika Kebijakan Komoditas Gula Kristal Putih Nasional. Indonesian Sugar Research Journal, 4(2), 68–79. https://doi.org/10.54256/isrj.v4i2.129

Susanto, V. P., Gunawan, I., & Hartanti, L. P. S. (2022). Aplikasi teorema bayes dalam mendukung aktivitas autonomous maintenance di pabrik gula Kedawoeng. Agrointek : Jurnal Teknologi Industri Pertanian, 16(3), 373–384. https://doi.org/10.21107/agrointek.v16i3.13533

Downloads

Published

2025-04-15

How to Cite

Ananta, A. Y., Ariyanto, R., Rozi, I. F., & Arianto, R. (2025). Analisis Performa Metode Extreme Learning Machine dan Multiple Linear Regression dalam Prediksi Produksi Gula. Edumatic: Jurnal Pendidikan Informatika, 9(1), 169–178. https://doi.org/10.29408/edumatic.v9i1.29626