Sentiment Analysis on Indonesian National Football Team Naturalization using KNN and SVM
DOI:
https://doi.org/10.29408/edumatic.v9i1.29653Keywords:
naturalization, social media analysis, text classification, timnasAbstract
The naturalization of football players in Indonesia is largely viewed positively, with supporters highlighting its benefits for team performance, international competitiveness, and player development. While PSSI endorses naturalization to strengthen the national team, Liga Indonesia Baru (PT LIB) imposes limits to maintain fairness. The purpose of this research is to examine public sentiment toward the naturalization of Indonesian football players by analysing discussions on X and YouTube. This research analyses public sentiment toward the naturalization of Indonesian football players using a data and text mining approach based on 3,267 comments from X and YouTube between 2022 and 2024. The research process includes data collection, preprocessing, TFIDF, data labeling, and model training and evaluation. Two machine learning models, KNN and SVM, are implemented for classification, with SVM outperforming KNN in accuracy. Our results show that KNN achieved 76.71% accuracy (precision: 52%, recall: 56%, F1-score: 53%), while SVM RBF outperformed with 86.51% accuracy (precision: 59%, recall: 42%, F1-score: 26%). SMOTE and GridSearch effectively address the class imbalance and optimize model performance. Public sentiment is predominantly positive, highlighting enhanced team performance and global recognition. These insights assist PSSI and policymakers in making informed decisions regarding fairness, discrimination, and the governance of Indonesian football.
References
Aneboa, K., Abrar, & Syahruddin. (2024). Pemain Naturalisasi: Masalah Hukum, Nasionalisme, Dan Identitas Sosial Dalam Sistem Sepakbola Elit Indonesia. Jurnal Ilmu Sosial Dan Pendidikan, 2(2), 345–362.
Angumboro, B., & Wakhid, P. (2024). Pemberitaan Pemain Naturalisasi Dalam Media dengan Analisis DNA Dan Visone. Commsphere: Jurnal Mahasiswa Ilmu Komunikasi, 2(2), 166–177. https://doi.org/10.37631/commsphere.v2iII.1593
Annas, G. K., & Hazzar, N. M. (2024). Analisis Persamaan Hak Kewarganegaraan bagi Pemain Naturalisasi Sepakbola di Indonesia. Wicarana: Jurnal Hukum Dan Hak Asasi Manusia, 3(1), 21–27. https://doi.org/https://doi.org/10.57123/wicarana.v2i2.37
Arolfo, F., Rodriguez, K. C., & Vaisman, A. (2022). Analyzing the Quality of Twitter Data Streams. Information Systems Frontiers, 24(1), 349–369. https://doi.org/10.1007/s10796-020-10072-x
Cahyani, D. E., & Patasik, I. (2021). Performance comparison of tf-idf and word2vec models for emotion text classification. Bulletin of Electrical Engineering and Informatics, 10(5), 2780–2788. https://doi.org/10.11591/eei.v10i5.3157
Erwansyah, R. D., Pratama, A. S., Pangestu, A. P., Asvi, Z., & Shohi, A. (2024). Legal Review of The Phenomenon of Naturalization of Foreign Players for The Indonesian National Football Team. Indonesian Journal of Sports Law, 1(2), 46–58.
Franko, B., Wilyanto, N., & Irsyad, H. (2024). Analisis Sentimen terhadap Naturalisasi Pemain pada Youtube Menggunakan Decision tree dan Naive bayes. Software Development, Digital Business Intelligence, and Computer Engineering, 3(1), 8-16.
Ghafur, M., Lubis, R., Sambora, D., & Teuku, S. (2025). Evaluasi Kinerja Algoritma Support Vector Machine ( SVM ) Dalam Analisis Sentimen Publik Terhadap Naturalisasi Timnas Indonesia di Twitter. Journal of Accounting Law Communication and Technology, 2(1), 81–89. https://doi.org/10.57235/jalakotek.v2i1.4180
Irawaty, I., Andreswari, R., & Pramesti, D. (2020). Vectorizer Comparison for Sentiment Analysis on Social Media Youtube: A Case Study. International Conference on Computer and Informatics Engineering, IC2IE 2020, 69–74. Yogyakarta, Indonesia: IEEE. https://doi.org/10.1109/IC2IE50715.2020.9274650
Khairunnisa, S., Adiwijaya, A., & Faraby, S. Al. (2021). Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19). Jurnal Media Informatika Budidarma, 5(2), 406–414. https://doi.org/10.30865/mib.v5i2.2835
Pamungkas, A. S., & Cahyono, N. (2024). Analisis Sentimen Review ChatGPT di Play Store menggunakan Support Vector Machine dan K-Nearest Neighbor. Edumatic: Jurnal Pendidikan Informatika, 8(1), 1–10. https://doi.org/10.29408/edumatic.v8i1.24114
Putra, A., & Dwiki, A. (2021). Sentiment Analysis on User Reviews of the Bibit and Bareksa Application with the KNN Algorithm. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(2), 636–646. https://doi.org/10.35957/jatisi.v8i2.962
Putri, N. K., Vitianingsih, A. V., Kacung, S., Maukar, A. L., & Yasin, V. (2024). Sentiment Analysis of Brand Ambassador Influence on Product Buyer Interest Using KNN and SVM. Indonesian Journal of Artificial Intelligence and Data Mining, 7(2), 327–336. https://doi.org/10.24014/ijaidm.v7i2.29469
Rikky, R., Graciela, M., & Irsyad, H. (2024). Klasifikasi Opini Masyarakat Terhadap Naturalisasi Pemain Sepak Bola Menggunakan KNN dan SMOTE. Aicoms, 3(1), 21–27. https://doi.org/10.58466/aicoms.v3i1.1547
Sania, N. M., Baitillah, N., Indriani, M. H., Fernanda, F., & Aditya, T. (2025). Survei Kepuasan Opini Publik terhadap Kebijakan Naturalisasi Pemain PSSI: dalam Upaya Meningkatkan Prestasi Timnas Indonesia. Indonesian Journal of Public Administration Review, 2(2), 1–19. https://doi.org/10.47134/par.v2i2.3564
Sofiyan, M., Butsianto, S., & Andika, S. (2024). Analisis sentimen terhadap naturalisasi pemain Timnas Indonesia berdasarkan opini Twitter menggunakan Naïve Bayes. Jurnal Kreativitas Teknologi Dan Komputer, 15(9), 47–59.
Solimun, Rinaldo, Adji Achmad Fernandes, N., Erwinda, E. G., Hardianti, R., & Arini, L. H. Y. (2023). Metodologi Penelitian: Variabel Mining berbasis Big Data dalam Pemodelan Sistem untuk mengungkap Research Novelty. Malang: Universitas Brawijaya Press. https://doi.org/10.11594/ubpress9786232967052
Wicaksono, M. H., Purbolaksono, M. D., & Faraby, S. Al. (2023). Perbandingan Algoritma Machine Learning untuk Analisis Sentimen Berbasis Aspek pada Review Female Daily. EProceedings of Engineering, 10(3), 3591–3600.
Wongvorachan, T., He, S., & Bulut, O. (2023). A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining. Information (Switzerland), 14(1), 54–69. https://doi.org/10.3390/info14010054
Zahran, M., Asril, M. F., & Gema N. B. (2024). Analisis Jaringan dan Aktor Pada Keyword Naturalisasi Timnas di Media Sosial X. Al-Ittishol: Jurnal Komunikasi Dan Penyiaran Islam, 5(2), 226–239. https://doi.org/10.51339/ittishol.v5i2.2466
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Salza Kartika Adharani, Slamet Kacung, Anik Vega Vitianingsih

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.