Perbandingan Algoritma Random Forest, XGBoost, dan Logistic Regression untuk Prediksi Risiko Kekambuhan Kanker Tiroid
DOI:
https://doi.org/10.29408/edumatic.v9i1.29664Keywords:
clinical decision, logistic regression, random forest, thyroid cancer, xgboostAbstract
Thyroid cancer, although relatively rare (0.85-2.5% of all cancer cases), is of serious concern due to its higher prevalence in women and challenges in diagnosis due to limitations of conventional methods such as fine-needle aspiration biopsy and ultrasound. This study aims to predict the risk of thyroid cancer recurrence by applying random forest, XGBoost, and logistic regression methods. Classifying the recurrence of thyroid cancer using 14 dataset variables obtained from Ken Saras Hospital, which amounted to 2000 datasets. The data will be classified using 3 method models and evaluated using a confusion matrix to find the best accuracy evaluation value. Based on the evaluation results, logistic regression gets an accuracy value of 83%, and random forest and XGBoost get an accuracy of 82%. Our findings prove that machine learning approaches can serve as an effective clinical decision support system in improving diagnosis efficiency and facilitating timely medical interventions. The implementation of this in clinical practice still requires integration with comprehensive medical considerations and supervision of healthcare professionals to ensure safety. The results contribute to the development of more reliable and efficient thyroid cancer diagnostic tools.
References
Ardianta, E. C., Wibowo, P. A., Maulana, N., Ristyawan, A., & Daniati, E. (2024). Optimalisasi prediksi tingkat obesitas di negara Mexico menggunakan perbandingan support vector machine dan naïve Bayes. Seminar Nasional Inovasi Teknologi, 8(3), 1551–1559.
Egwom, O. J., Hassan, M., Tanimu, J. J., Hamada, M., & Ogar, O. M. (2022). An LDA–SVM machine learning model for breast cancer classification. BioMedInformatics, 2(3), 345–358. https://doi.org/10.3390/biomedinformatics2030022
Gild, M. L., Clifton-Bligh, R. J., Wirth, L. J., & Robinson, B. G. (2023). Medullary Thyroid Cancer: Updates and Challenges. Endocrine Reviews, 44(5), 934–946. https://doi.org/10.1210/endrev/bnad013
Habchi, Y., Himeur, Y., Kheddar, H., Boukabou, A., Atalla, S., Chouchane, A., Ouamane, A., & Mansoor, W. (2023). AI in Thyroid Cancer Diagnosis: Techniques, Trends, and Future Directions. Systems, 11(10), 1–48. https://doi.org/10.3390/systems11100519
Hendrawan, I. R., Utami, E., & Hartanto, A. D. (2022). Comparison of Naïve Bayes Algorithm and XGBoost on Local Product Review Text Classification. Edumatic: Jurnal Pendidikan Informatika, 6(1), 143–149. https://doi.org/10.29408/edumatic.v6i1.5613
Fajar, A. K., Mutaqin, M. Z., Mutoffar, M. M., & Setiyadi, D. (2024). Klasifikasi Kanker Payudara Menggunakan Algoritma Neural Network dan Random Forest. Jurnal Manajemen Informatika dan Sistem Informasi, 7(1), 74-80. https://doi.org/10.35316/justify.v2i1.3370
Meilani, N., & Nurdiawan, O. (2023). Data Mining untuk Klasifikasi Penderita Kanker Payudara Menggunakan Algoritma K-Nearest Neighbor. Jurnal Wahana Informatika (JWI), 2(1), 177–187.
Michael, E., Ma, H., Li, H., & Qi, S. (2022). An optimized framework for breast cancer classification using machine learning. BioMed Research International, 2022(1), 8482022. https://doi.org/10.1155/2022/8482022
Miranda-Filho, A., Lortet-Tieulent, J., Bray, F., Cao, B., Franceschi, S., Vaccarella, S., & Dal Maso, L. (2021). Thyroid cancer incidence trends by histology in 25 countries: a population-based study. The Lancet Diabetes and Endocrinology, 9(4), 225–234. https://doi.org/10.1016/S2213-8587(21)00027-9
Muntiari, N. R., & Hanif, K. H. (2022). Klasifikasi Penyakit Kanker Payudara Menggunakan Perbandingan Algoritma Machine Learning. Jurnal Ilmu Komputer dan Teknologi, 3(1), 1–6. https://doi.org/10.35960/ikomti.v3i1.766
Nabhan, F., Dedhia, P. H., & Ringel, M. D. (2021). Thyroid cancer, recent advances in diagnosis and therapy. International Journal of Cancer, 149(5), 984–992. https://doi.org/10.1002/ijc.33690
Nageswaran, S., Arunkumar, G., Bisht, A. K., Mewada, S., Kumar, J. S., Jawarneh, M., & Asenso, E. (2022). Lung Cancer Classification and Prediction Using Machine Learning and Image Processing. BioMed Research International, 2022(1), 1755460. https://doi.org/10.1155/2022/1755460
Nirmala, V., Shashank, H. S., Manoj, M. M., Satish, R. G., & Premaladha, J. (2023). Skin Cancer Classification Using Image Processing with Machine Learning Techniques. Intelligent Data Analytics, IoT, and Blockchain, 1-15. Auerbach Publications. https://doi.org/10.1201/9781003371380-1
Sanjaya, U. P., Alawi, Z., Zayn, A. R., & Dirgantoro, G. P. (2023). Optimasi Convolutional Neural Network dengan Standard Deviasi untuk Klasifikasi Pneumonia pada Citra X-rays Paru. Generation Journal, 7(3), 40–47. https://doi.org/10.29407/gj.v7i3.20183
Schlumberger, M., & Leboulleux, S. (2021). Current practice in patients with differentiated thyroid cancer. Nature Reviews Endocrinology, 17(3), 176–188. https://doi.org/10.1038/s41574-020-00448-z
Septhya, D., Rahayu, K., Rabbani, S., Fitria, V., Rahmaddeni, R., Irawan, Y., & Hayami, R. (2023). Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(1), 15–19. https://doi.org/10.57152/malcom.v3i1.591
Urbanos, G., Martín, A., Vázquez, G., Villanueva, M., Villa, M., Jimenez-Roldan, L., Chavarrías, M., Lagares, A., Juárez, E., & Sanz, C. (2021). Supervised machine learning methods and hyperspectral imaging techniques jointly applied for brain cancer classification. Sensors, 21(11). https://doi.org/10.3390/s21113827
van Gerwen, M., Colicino, E., Guan, H., Dolios, G., Nadkarni, G. N., Vermeulen, R. C., ... & Petrick, L. M. (2023). Per-and polyfluoroalkyl substances (PFAS) exposure and thyroid cancer risk. EBioMedicine, 97, 104831. https://doi.org/10.1016/j.ebiom.2023.104831
Wu, J., & Hicks, C. (2021). Breast cancer type classification using machine learning. Journal of Personalized Medicine, 11(2), 1–12. https://doi.org/10.3390/jpm11020061
Wulandari, K. A., Nugraha, A., Luthfiarta, A., & Nisa, L. R. (2024). Peningkatan Akurasi Deteksi Dini Penyakit Parkinson melalui Pendekatan Ensemble Learning dan Seleksi Fitur Optimal. Edumatic: Jurnal Pendidikan Informatika, 8(2), 575–584. https://doi.org/10.29408/edumatic.v8i2.27788
Zahrah, F. N. Z., & Muljono. (2024). Machine Learning Untuk Deteksi Stres Pelajar: Perceptron sebagai Model Klasifikasi Efektif untuk Intervensi Dini. Edumatic: Jurnal Pendidikan Informatika, 8(2), 764–773. https://doi.org/10.29408/edumatic.v8i2.28011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Salma Rihadatul Ais, Ucta Pradema Sanjaya

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.