Perbandingan Algoritma Random Forest, XGBoost, dan Logistic Regression untuk Prediksi Risiko Kekambuhan Kanker Tiroid

Authors

  • Salma Rihadatul Ais Program Studi Teknik Informatika, Universitas Ngudi Waluyo
  • Ucta Pradema Sanjaya Program Studi Teknik Informatika, Universitas Ngudi Waluyo

DOI:

https://doi.org/10.29408/edumatic.v9i1.29664

Keywords:

clinical decision, logistic regression, random forest, thyroid cancer, xgboost

Abstract

Thyroid cancer, although relatively rare (0.85-2.5% of all cancer cases), is of serious concern due to its higher prevalence in women and challenges in diagnosis due to limitations of conventional methods such as fine-needle aspiration biopsy and ultrasound. This study aims to predict the risk of thyroid cancer recurrence by applying random forest, XGBoost, and logistic regression methods. Classifying the recurrence of thyroid cancer using 14 dataset variables obtained from Ken Saras Hospital, which amounted to 2000 datasets. The data will be classified using 3 method models and evaluated using a confusion matrix to find the best accuracy evaluation value. Based on the evaluation results, logistic regression gets an accuracy value of 83%, and random forest and XGBoost get an accuracy of 82%. Our findings prove that machine learning approaches can serve as an effective clinical decision support system in improving diagnosis efficiency and facilitating timely medical interventions. The implementation of this in clinical practice still requires integration with comprehensive medical considerations and supervision of healthcare professionals to ensure safety. The results contribute to the development of more reliable and efficient thyroid cancer diagnostic tools.

References

Ardianta, E. C., Wibowo, P. A., Maulana, N., Ristyawan, A., & Daniati, E. (2024). Optimalisasi prediksi tingkat obesitas di negara Mexico menggunakan perbandingan support vector machine dan naïve Bayes. Seminar Nasional Inovasi Teknologi, 8(3), 1551–1559.

Egwom, O. J., Hassan, M., Tanimu, J. J., Hamada, M., & Ogar, O. M. (2022). An LDA–SVM machine learning model for breast cancer classification. BioMedInformatics, 2(3), 345–358. https://doi.org/10.3390/biomedinformatics2030022

Gild, M. L., Clifton-Bligh, R. J., Wirth, L. J., & Robinson, B. G. (2023). Medullary Thyroid Cancer: Updates and Challenges. Endocrine Reviews, 44(5), 934–946. https://doi.org/10.1210/endrev/bnad013

Habchi, Y., Himeur, Y., Kheddar, H., Boukabou, A., Atalla, S., Chouchane, A., Ouamane, A., & Mansoor, W. (2023). AI in Thyroid Cancer Diagnosis: Techniques, Trends, and Future Directions. Systems, 11(10), 1–48. https://doi.org/10.3390/systems11100519

Hendrawan, I. R., Utami, E., & Hartanto, A. D. (2022). Comparison of Naïve Bayes Algorithm and XGBoost on Local Product Review Text Classification. Edumatic: Jurnal Pendidikan Informatika, 6(1), 143–149. https://doi.org/10.29408/edumatic.v6i1.5613

Fajar, A. K., Mutaqin, M. Z., Mutoffar, M. M., & Setiyadi, D. (2024). Klasifikasi Kanker Payudara Menggunakan Algoritma Neural Network dan Random Forest. Jurnal Manajemen Informatika dan Sistem Informasi, 7(1), 74-80. https://doi.org/10.35316/justify.v2i1.3370

Meilani, N., & Nurdiawan, O. (2023). Data Mining untuk Klasifikasi Penderita Kanker Payudara Menggunakan Algoritma K-Nearest Neighbor. Jurnal Wahana Informatika (JWI), 2(1), 177–187.

Michael, E., Ma, H., Li, H., & Qi, S. (2022). An optimized framework for breast cancer classification using machine learning. BioMed Research International, 2022(1), 8482022. https://doi.org/10.1155/2022/8482022

Miranda-Filho, A., Lortet-Tieulent, J., Bray, F., Cao, B., Franceschi, S., Vaccarella, S., & Dal Maso, L. (2021). Thyroid cancer incidence trends by histology in 25 countries: a population-based study. The Lancet Diabetes and Endocrinology, 9(4), 225–234. https://doi.org/10.1016/S2213-8587(21)00027-9

Muntiari, N. R., & Hanif, K. H. (2022). Klasifikasi Penyakit Kanker Payudara Menggunakan Perbandingan Algoritma Machine Learning. Jurnal Ilmu Komputer dan Teknologi, 3(1), 1–6. https://doi.org/10.35960/ikomti.v3i1.766

Nabhan, F., Dedhia, P. H., & Ringel, M. D. (2021). Thyroid cancer, recent advances in diagnosis and therapy. International Journal of Cancer, 149(5), 984–992. https://doi.org/10.1002/ijc.33690

Nageswaran, S., Arunkumar, G., Bisht, A. K., Mewada, S., Kumar, J. S., Jawarneh, M., & Asenso, E. (2022). Lung Cancer Classification and Prediction Using Machine Learning and Image Processing. BioMed Research International, 2022(1), 1755460. https://doi.org/10.1155/2022/1755460

Nirmala, V., Shashank, H. S., Manoj, M. M., Satish, R. G., & Premaladha, J. (2023). Skin Cancer Classification Using Image Processing with Machine Learning Techniques. Intelligent Data Analytics, IoT, and Blockchain, 1-15. Auerbach Publications. https://doi.org/10.1201/9781003371380-1

Sanjaya, U. P., Alawi, Z., Zayn, A. R., & Dirgantoro, G. P. (2023). Optimasi Convolutional Neural Network dengan Standard Deviasi untuk Klasifikasi Pneumonia pada Citra X-rays Paru. Generation Journal, 7(3), 40–47. https://doi.org/10.29407/gj.v7i3.20183

Schlumberger, M., & Leboulleux, S. (2021). Current practice in patients with differentiated thyroid cancer. Nature Reviews Endocrinology, 17(3), 176–188. https://doi.org/10.1038/s41574-020-00448-z

Septhya, D., Rahayu, K., Rabbani, S., Fitria, V., Rahmaddeni, R., Irawan, Y., & Hayami, R. (2023). Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(1), 15–19. https://doi.org/10.57152/malcom.v3i1.591

Urbanos, G., Martín, A., Vázquez, G., Villanueva, M., Villa, M., Jimenez-Roldan, L., Chavarrías, M., Lagares, A., Juárez, E., & Sanz, C. (2021). Supervised machine learning methods and hyperspectral imaging techniques jointly applied for brain cancer classification. Sensors, 21(11). https://doi.org/10.3390/s21113827

van Gerwen, M., Colicino, E., Guan, H., Dolios, G., Nadkarni, G. N., Vermeulen, R. C., ... & Petrick, L. M. (2023). Per-and polyfluoroalkyl substances (PFAS) exposure and thyroid cancer risk. EBioMedicine, 97, 104831. https://doi.org/10.1016/j.ebiom.2023.104831

Wu, J., & Hicks, C. (2021). Breast cancer type classification using machine learning. Journal of Personalized Medicine, 11(2), 1–12. https://doi.org/10.3390/jpm11020061

Wulandari, K. A., Nugraha, A., Luthfiarta, A., & Nisa, L. R. (2024). Peningkatan Akurasi Deteksi Dini Penyakit Parkinson melalui Pendekatan Ensemble Learning dan Seleksi Fitur Optimal. Edumatic: Jurnal Pendidikan Informatika, 8(2), 575–584. https://doi.org/10.29408/edumatic.v8i2.27788

Zahrah, F. N. Z., & Muljono. (2024). Machine Learning Untuk Deteksi Stres Pelajar: Perceptron sebagai Model Klasifikasi Efektif untuk Intervensi Dini. Edumatic: Jurnal Pendidikan Informatika, 8(2), 764–773. https://doi.org/10.29408/edumatic.v8i2.28011

Downloads

Published

2025-04-21

How to Cite

Ais, S. R., & Sanjaya, U. P. (2025). Perbandingan Algoritma Random Forest, XGBoost, dan Logistic Regression untuk Prediksi Risiko Kekambuhan Kanker Tiroid. Edumatic: Jurnal Pendidikan Informatika, 9(1), 324–332. https://doi.org/10.29408/edumatic.v9i1.29664