Analisis Sentimen Ulasan Co-Pilot Google Play dengan SVM, Neural Network, dan Decision Tree
DOI:
https://doi.org/10.29408/edumatic.v9i1.29673Keywords:
decision tree, machine learning, microsoft co-pilot, neural network, support vector machineAbstract
Sentiment analysis is a technique used to understand user opinions through product or service reviews. The purpose of this research is to compare three classification methods, namely Support Vector Machine (SVM), Neural Network (NN), and Decision Tree (DT) in analyzing the sentiment of users of the Indonesian-language Microsoft Co-Pilot application taken from the Google Play Store. The dataset consists of 20,000 reviews, which first went through preprocessing such as normalization, tokenization, stopwords removal, and stemming. The three methods we used in this study have a Multilayer Perceptron (MLP) architecture with three hidden layers and a ReLU activation function, as well as a dropout regularization technique to avoid overfitting. Model evaluation was conducted using accuracy, precision, recall, and F1-score, with the results showing that NN achieved the highest accuracy of 95.5%, followed by SVM with 95.4% and DT with 92.1%. The advantage of the NN method lies in its ability to recognize more complex patterns in Indonesian, especially in handling informal text and code-mixing. This research contributes to the development of Artificial Intelligence (AI)-based applications by providing insights into the effectiveness of classification methods in Indonesian sentiment analysis, which is important for improving service quality and the development of NLP technology in Indonesia. The practical implications of this research can be used in the development of AI-based applications that are more responsive to user sentiment.
References
Budianto, A. G., Rusilawati, R., Suryo, A. T. E., Cahyono, G. R., Zulkarnain, A. F., & Martunus, M. (2024). Perbandingan Performa Algoritma Support Vector Machine (SVM) dan Logistic Regression untuk Analisis Sentimen Pengguna Aplikasi Retail di Android. Jurnal Sains Dan Informatika, 10(2), 1-10. https://doi.org/10.34128/jsi.v10i2.911
Dewi, F. K. S. (2021). Klasifikasi Berita Menggunakan Metode Multinomial Naïve Bayes. Scan: Jurnal Teknologi Informasi dan Komunikasi, 16(3), 1-8. https://doi.org/10.33005/scan.v16i3.2870
Hendrawan, R., Pratama, D., & Sari, A. (2022). Preprocessing Data untuk Analisis Sentimen Bahasa Indonesia: Studi Kasus pada Media Sosial. Jurnal Informatika, 8(2), 99–112.
Junianto, H., Saputro, R. E., Kusuma, B. A., & Saputra, D. I. S. (2024). Comparison Of Logistic Regression and Random Forest in Sentiment Analysis of Disdukcapil Application Reviews. Jurnal Teknik Informatika (Jutif), 5(6), 1539-1547.
Kurniawan, A., & Waluyo, R. (2022). Klasifikasi Sentimen Ulasan Aplikasi Transportasi Online Menggunakan Decision Tree dan Naïve Bayes. Jurnal Teknologi Informasi Dan Komputer, 10(3), 233–247.
Manueke, E. G. Y., Lumando, L., Mangkey, L., & Manueke, G.W. (2023). Sentiment Analysis of Lyrics on Recycled and Recent Songs using Natural Language Processing Technology. Proceedings of International Seminar on Innovation Challenges Multidisciplinary Research for Sustainable Development Goals, 47-57. Maharashtra, India: Novateur Publication.
Nurian, A. (2023). Analisis Sentimen Ulasan Pengguna Aplikasi Google Play Menggunakan Naïve Bayes. Jurnal Informatika Dan Teknik Elektro Terapan, 11(3), 829-835. https://doi.org/10.23960/jitet.v11i3s1.3348
Pamungkas, A. A., Alam, C. N., Atmadja, A. R., & Juliansyah, R. (2024). Integrasi Kamus Multibahasa pada Feed Forward Neural Network dan IndoBERT dalam Pengembangan Chatbot Mobile. Edumatic: Jurnal Pendidikan Informatika, 8(2), 635-644. https://doi.org/10.29408/edumatic.v8i2.27886
Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011
Rahayu, N. A., Wibowo, H., & Nugroho, A. (2022). Analisis Sentimen Pengguna Marketplace dengan TF-IDF dan Support Vector Machine. Jurnal Ilmu Komputer Dan Sistem Informasi, 14(1), 87–102.
Ramadani, N. C., Tahyudin, I., & Barkah, A. S. (2024). Perbandingan Algoritma Support Vector Machine, Decision Tree, dan Logistic Regression pada Analisis Sentimen Ulasan Aplikasi Netflix. Jurnal Nasional Teknologi Dan Sistem Informasi, 10(2), 110–117. https://doi.org/10.25077/TEKNOSI.v10i2.2024.110-117
Ramdhana, A. C., & Pratiwi, N. (2023). Perbandingan Kinerja Model Convolutional Neural Network pada Klasifikasi Kanker Kulit. Edumatic: Jurnal Pendidikan Informatika, 7(2), 197-206. https://doi.org/10.29408/edumatic.v7i2.19823
Sabrani, A., Wedashwara W., I. G. W., & Bimantoro, F. (2020). Multinomial Naïve Bayes untuk Klasifikasi Artikel Online tentang Gempa di Indonesia. Jurnal Teknologi Informasi, Komputer, Dan Aplikasinya (JTIKA), 2(1), 89–100. https://doi.org/10.29303/jtika.v2i1.87
Saputra, F. A., & Noor Hasan, M. (2023). Implementasi Neural Network dalam Analisis Sentimen Twitter Berbahasa Indonesia. Jurnal Kecerdasan Buatan, 6(2), 123–137.
Setiawan, A., & Suryono. (2024). Analisis Sentimen Terhadap Kebijakan Ibu Kota Nusantara Menggunakan Machine Learning. Jurnal Sistem Informasi, 12(1), 45–58.
Sihombing, T., & Yuliati, N. (2021). Support Vector Machine untuk Klasifikasi Opini Publik terhadap Layanan Digital Banking. Jurnal Data Mining Indonesia, 9(1), 78–92.
Singgalen, F. (2022). Penerapan Decision Tree dalam Analisis Sentimen Produk Digital. Jurnal Teknologi Dan Inovasi Digital, 5(2), 45–61. https://doi.org/10.30865/json.v5i2.7081
Soemedhy, C. A. A., & others. (2023). Analisis Komparasi Algoritma Machine Learning untuk Sentiment Analysis (Studi Kasus: Komentar YouTube ’Kekerasan Seksual’). Jurnal Teknologi Informasi Dan Komunikasi, 11(2), 35–45. https://doi.org/10.30591/jpit.v7i2.3547
Triginandri, R., & Subhiyakto, E. R. (2024). Deteksi Dini Cacar Monyet menggunakan Convolutional Neural Network (CNN) dalam Aplikasi Mobile. Edumatic: Jurnal Pendidikan Informatika, 8(2), 516-525. https://doi.org/10.29408/edumatic.v8i2.27625
Yolanda, R., Firmansyah, A., & Widodo, S. (2022). Perbandingan Kinerja Support Vector Machine dan Naïve Bayes dalam Analisis Sentimen pada E-Commerce. Jurnal Sains Data Dan Informatika, 7(3), 89–104.
Yuliana, D., Purwanto, & Supriyanto, C. (2019). Klasifikasi Teks Pengaduan Masyarakat Dengan Menggunakan Algoritma Neural Network. Jurnal KomtekInfo, 5(3), 92–116. https://doi.org/10.35134/komtekinfo.v5i3.35
Zamsuri, R., Putra, A. F., & Wijaya, S. (2023). Decision Tree Berbasis SMOTE dalam Analisis Sentimen Masyarakat terhadap Vaksin COVID-19. Jurnal Riset Manajemen Dan Informatika Komputer, 10(1), 1–10.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Imam Kharits Najibulloh, Imam Tahyudin, Dhanar Intan Surya Saputra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini adalah tanggung jawab penuh penulis. Edumatic: Jurnal Pendidikan Informatika bisa diakses secara free (gratis) tanpa ada pungutan biaya, sesuai dengan lisensi creative commons yang digunakan.

This work is licensed under a Lisensi a Creative Commons Attribution-ShareAlike 4.0 International License.