DiabTrack: Sistem Prediksi Dini Diabetes Melitus Tipe 2 berbasis Web menggunakan Algoritma K-Nearest Neighbors

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i1.29691

Keywords:

early detection, type 2 diabetes mellitus, diabtrack, knn, disease prediction

Abstract

Type 2 diabetes mellitus is a chronic disease that is often not detected early enough, increasing the risk of serious complications. Based on this, early detection of this disease is very important to reduce its negative impact. This research aims to develop the DiabTrack system, a web-based prediction system using the K-Nearest Neighbors (KNN) algorithm. This type of research is development research using the Rapid Application Development (RAD) model, including the requirements planning, design workshop, and implementation stages. The dataset used comes from Kaggle, containing 53,000 samples and 8 features. The model is trained using the KNN algorithm and the SMOTE technique to balance the data. Evaluation results show that the KNN model achieves an accuracy of 99.17%, a recall of 100%, and an F1-score of 94%, making it the chosen algorithm for the DiabTrack website. Additionally, Black Box testing results indicate that all features in the DiabTrack system function as expected, helping the public monitor their health conditions while serving as an initial analysis tool for medical professionals.

References

Aladin, A., Gustina, E., & Zaman, C. (2024). Medication adherence in diabetes mellitus patients kepatuhan minum obat pada penderita diabetes mellitus. Jurnal Midwifery and Nursing Research, 7(2), 177-186. https://doi.org/10.56013/jurnalmidz.v7i2.2865

Anasanti, M. D., Hilyati, K., & Novtariany, A. (2022). The exploring feature selection techniques on classification algorithms for predicting type 2 diabetes at early stage. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(5), 832–839. https://doi.org/10.29207/resti.v6i5.4419

Arini, H. N., Anggorowati, A., & Pujiastuti, Rr. S. E. (2022). Dukungan keluarga pada lansia dengan diabetes melitus tipe II: Literature review. NURSCOPE: Jurnal Penelitian dan Pemikiran Ilmiah Keperawatan, 7(2), 172–180. https://doi.org/10.30659/nurscope.7.2.172-180

Arti, P. P., Yanti, I., & Pauzan, M. (2024). Electronic nose untuk skrining penyakit diabetes mellitus menggunakan K-nearest neighbor dan larik sensor. Jurnal Teknologi Informasi dan Ilmu Komputer, 11(2), 429–436. https://doi.org/10.25126/jtiik.20241128290

Chaerul, D., Saputra, E., Muryadi, E. I., Phann, R., & Futri, I. (2024). An innovative artificial intelligence-based extreme learning machine based on random forest classifier for diagnosed diabetes mellitus. Jurnal Teknologi Informasi dan Ilmu Komputer, 10(1), 173–187. https://doi.org/10.26555/jiteki.v10i1.28690

Emhandyksa, M., Soesanti, I., & Susilowati, R. (2023). Pengembangan deep learning untuk sistem deteksi dini komplikasi kaki diabetik menggunakan citra termogram. Jurnal Teknologi Informasi dan Ilmu Komputer, 10(6), 1241–1252. https://doi.org/10.25126/jtiik.1067382

Faida, A. N., & Santik, Y. D. P. (2020). Kejadian diabetes melitus tipe I pada usia 10-30 tahun. Higeia Journal of Public Health Research and Development, 4(1), 33–42.

Fatmawati, F., Wicaksono, S. A., & Wijoyo, S. H. (2023). Implementasi algoritma Naïve Bayes untuk mendeteksi risiko tinggi diabetes melitus pada ibu hamil (studi kasus: Puskesmas Kabupaten Malang). Jurnal Teknologi Informasi dan Ilmu Komputer, 10(4), 851–856. https://doi.org/10.25126/jtiik.20241046422

Kurniadi, D., Mulyani, A., Firmansyah, M., & Abania, N. (2022). Sistem Informasi Geografis Pemetaan Data Terpadu Kesejahteraan Sosial di Kabupaten Garut. Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(6), 1307-1314. https://doi.org/10.25126/jtiik.2022956098

Pinandito, A., Wicaksono, S. A., & Wijoyo, S. H. (2023). Implementasi machine learning dalam deteksi risiko tinggi diabetes melitus pada kehamilan. Jurnal Teknologi Informasi dan Ilmu Komputer, 10(4), 739–746. https://doi.org/10.25126/jtiik.20241047005

Pradana, M. S. J., Hendrawan, A., Christioko, B. V., & Pinem, A. P. R. (2022). Implementasi sistem administrasi di unit pelaksana teknis pusat pengembangan publikasi ilmiah dosen Universitas Semarang berbasis website. Jurnal Teknologi Informasi dan Ilmu Komputer, 9(3), 501–506. https://doi.org/10.25126/jtiik.2021864089

Pramana, I. K. A. P. P., Septiawan, R. R., & Kurniawan, I. (2022). QSAR study on diacylglycerol acyltransferase-1 (DGAT-1) inhibitor as anti-diabetic using PSO-SVM methods. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(5), 735–741. https://doi.org/10.29207/resti.v6i5.4294

Priyanto, P., Yulianingsih, N., & Asyari, H. (2022). Hubungan pengetahuan tentang diabetes mellitus dengan kepatuhan menjalani pengobatan pada pasien diabetes mellitus di Kecamatan Kertasemaya tahun 2021. Jurnal Pengabdian Ilmu Kesehatan, 2(1), 17–24. https://doi.org/10.55606/jpikes.v2i1.337

Purbolaksono, M. D., Tantowi, M. I., Hidayat, A. I., & Adiwijaya, A. (2021). Perbandingan support vector machine dan modified balanced random forest dalam deteksi pasien penyakit diabetes. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(2), 393–399. https://doi.org/10.29207/resti.v5i2.3008

Purnawan, I. K. A., Wibawa, A. D., Kurniawati, A., & Purnomo, M. H. (2024). Optimizing Diabetic Neuropathy Severity Classification Using Electromyography Signals Through Synthetic Oversampling Techniques. Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI, 13(3), 681-690. https://doi.org/10.23887/janapati.v13i3.85675

Sakti, H. S., Dewangga, V. S., & Sulasmi, S. (2024). Differences in Bacterial Types in Controlled and Uncontrolled Type II Diabetes Mellitus with Urinary Tract Infections. Jurnal Biologi Tropis, 24(1b), 656-665. https://doi.org/10.29303/jbt.v24i1b.8093

Suryanegara, G. A. B., Adiwijaya, & Purbolaksono, M. D. (2021). Peningkatan hasil klasifikasi pada algoritma random forest untuk deteksi diabetes. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 1(10), 114–122. https://doi.org/10.29207/resti.v5i1.2880

Tarigan, D. M. B., Rini, D. P., & Samsuryadi, S. (2020). Seleksi fitur pada klasifikasi penyakit gula darah menggunakan particle swarm optimization (PSO) pada algoritma C4.5. Jurnal Rekayasa Sistem dan Teknologi Informasi, 4(3), 569–575. https://doi.org/10.29207/resti.v4i3.1881

Uska, M. Z., Wirasasmita, R. H., Usuluddin, U., & Arianti, B. D. D. (2020). Evaluation of rapidminer-aplication in data mining learning using persiva model. Edumatic: Jurnal Pendidikan Informatika, 4(2), 164-171. https://doi.org/10.29408/edumatic.v4i2.2688

Wardani, K. D. K., & Akbar, M. (2023). Diabetes risk prediction using feature importance extreme gradient boosting (XGBoost). Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 7(4), 824–831. https://doi.org/10.29207/resti.v7i4.4651

Downloads

Published

2025-04-18

How to Cite

Pangestu, A. G., Winarno, S., Nugraha, A., & Muttaqin, A. N. I. (2025). DiabTrack: Sistem Prediksi Dini Diabetes Melitus Tipe 2 berbasis Web menggunakan Algoritma K-Nearest Neighbors. Edumatic: Jurnal Pendidikan Informatika, 9(1), 284–293. https://doi.org/10.29408/edumatic.v9i1.29691