Pemetaan Lintasan Karir Alumni Berdasarkan Analisis Cluster: Kombinasi K-Means dan Reduksi Dimensi Autoencoder

Authors

DOI:

https://doi.org/10.29408/edumatic.v9i1.29713

Keywords:

alumni, autoencoder, clustering, k-means

Abstract

Alumni career mapping is a crucial aspect of evaluating and developing higher education programs. Cluster analysis, particularly the integration of k-means and autoencoder methods, has emerged as an effective solution for grouping complex and multi-dimensional alumni career data. This study aims to implement and assess the combination of k-means and autoencoder algorithms in alumni career mapping based on GPA, study duration, waiting time, job type, salary, job level, and field of study suitability. The autoencoder is employed to reduce dimensions, while k-means clusters alumni into groups based on the similarity of their career profiles. The data used in the cluster analysis is sourced from the tracer study. Pre-processing of the tracer study data is conducted through several stages, including cleaning, encoding, and normalization. The evaluation results indicate that the combination of k-means and autoencoder yields superior Silhouette and DBI scores. The Silhouette score with the autoencoder achieved 0.6112, while without it, the score was only 0.3956. The DBI value with the autoencoder is 0.566, whereas without it, the DBI reached 1.022. This cluster analysis effectively grouped the tracer study data into six clusters based on similarities in career profiles. The clustering results suggest that the formed clusters are more influenced by the alumni's job type and duration of study.

References

Achmad, F., Syariffuddien, Z., & Endryanyah, E. (2023). Application of Tracer Study for Alumni Mapping and Reorientation of Graduate Profiles. Proceedings of the International Joint Conference on Arts and Humanities 2022 (IJCAH 2022), 891–897. Surabaya, Indonesia. https://doi.org/10.2991/978-2-38476-008-4_94

Ashari, I. A., Negara, I. S. M., & Sumantri, R. B. B. (2022). Evaluasi Pembayaran Keuangan Siswa berdasarkan Penghasilan Wali Siswa menggunakan Metode Clustering K-Means. Edumatic: Jurnal Pendidikan Informatika, 6(2), 324–333. https://doi.org/10.29408/edumatic.v6i2.6395

Baroncelli, A., Bolzani, D., & Landoni, M. (2022). Mapping the engagement of alumni organisations in entrepreneurship education and support at UK universities. The International Journal of Management Education, 20(2), 100648. https://doi.org/10.1016/j.ijme.2022.100648

Baser, P., & Saini, J. R. (2015). Agent based Stock Clustering for Efficient Portfolio Management. International Journal of Computer Applications, 116(3), 35–41. https://doi.org/10.5120/20317-2381

Berahmand, K., Daneshfar, F., Salehi, E. S., Li, Y., & Xu, Y. (2024). Autoencoders and their applications in machine learning: a survey. Artificial Intelligence Review, 57(2), 1-52. https://doi.org/10.1007/s10462-023-10662-6

Chen, S., & Guo, W. (2023). Auto-Encoders in Deep Learning—A Review with New Perspectives. Mathematics, 11(8), 1–54. https://doi.org/10.3390/math11081777

Cortés, D. G., Onieva, E., López, I. P., Trinchera, L., & Wu, J. (2024). Autoencoder-Enhanced Clustering: A Dimensionality Reduction Approach to Financial Time Series. IEEE Access, 12, 16999–17009. https://doi.org/10.1109/ACCESS.2024.3359413

Cui, M. (2020). Introduction to the K-Means Clustering Algorithm Based on the Elbow Method. Accounting, Auditing and Finance Clausius Scientific Press, 1(1), 5-8.

Dahouda, M. K., & Joe, I. (2021). A Deep-Learned Embedding Technique for Categorical Features Encoding. IEEE Access, 9, 114381–114391. https://doi.org/10.1109/ACCESS.2021.3104357

Deng, D. (2020). DBSCAN Clustering Algorithm Based on Density. 7th International Forum on Electrical Engineering and Automation (IFEEA), 949–953. Hefei, China: IEEE. https://doi.org/10.1109/IFEEA51475.2020.00199

Hadijaya, Y., Said, H. B., Siregar, M. F. Z., & Wirtati, I. (2024). A Comparative Study on Mapping Alumni Satisfaction Levels Regarding Doctoral Program Management in Indonesia and Malaysia. Edutec: Journal of Education and Technology, 8(2), 429-440. https://doi.org/10.29062/edu.v8i2.1042

Liu, H., Chen, J., Dy, J., & Fu, Y. (2023). Transforming Complex Problems Into K-Means Solutions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(7), 9149–9168. https://doi.org/10.1109/TPAMI.2023.3237667

Martins, A. S. C., Araujo, L. R., & Penido, D. R. B. (2024). K-Medoids clustering applications for high-dimensionality multiphase probabilistic power flow. International Journal of Electrical Power & Energy Systems, 157, 109861. https://doi.org/10.1016/j.ijepes.2024.109861

Miraftabzadeh, S. M., Colombo, C. G., Longo, M., & Foiadelli, F. (2023). K-Means and Alternative Clustering Methods in Modern Power Systems. IEEE Access, 11, 119596–119633. https://doi.org/10.1109/ACCESS.2023.3327640

Sitorus, R. A., Arya, D., Dasopang, B. S., & Zufria, I. (2023). Analisis Tracer Study Alumni Program Studi S1 Ilmu Komputer UIN Sumatera Utara. Jurnal Kridatama Sains Dan Teknologi, 05(2), 411–420. https://doi.org/10.53863/kst.v5i02.967

Suraya, S., Sholeh, M., & Lestari, U. (2023). Evaluation of Data Clustering Accuracy using K-Means Algorithm. International Journal of Multidisciplinary Approach Research and Science, 2(01), 385–396. https://doi.org/10.59653/ijmars.v2i01.504

Wardhana, F. P., & Winarno, S. (2024). Analisis Pemain Terbaik Sepak Bola dengan menggunakan Algoritma K-Means. Edumatic: Jurnal Pendidikan Informatika, 8(2), 409–417. https://doi.org/10.29408/edumatic.v8i2.27105

Warni, S., Komara, C., & Kaniadewi, N. (2023). The Tracer Study: An In-Depth Search of The English Education Program Graduates. Ellter Journal, 4(1), 93–106. https://doi.org/10.22236/ellter.v4i1.11137

Wathoni, K. (2021). Alumni Menurut Perspektif Total Quality Management (TQM). MA'ALIM: Jurnal Pendidikan Islam, 2(01), 34-48. https://doi.org/10.21154/maalim.v2i01.3036

Zhu, Z., Xu, M., Ke, J., Yang, H., & Chen, X. (Michael). (2023). A Bayesian clustering ensemble Gaussian process model for network-wide traffic flow clustering and prediction. Transportation Research Part C: Emerging Technologies, 148, 104032. https://doi.org/10.1016/j.trc.2023.104032

Downloads

Published

2025-04-15

How to Cite

Prasetyawan, D., Mulyanto, A., & Gatra, R. (2025). Pemetaan Lintasan Karir Alumni Berdasarkan Analisis Cluster: Kombinasi K-Means dan Reduksi Dimensi Autoencoder. Edumatic: Jurnal Pendidikan Informatika, 9(1), 198–207. https://doi.org/10.29408/edumatic.v9i1.29713